| Results related to the transverse Yamabe problem | |
|---|---|
| 學年 | 111 |
| 學期 | 1 |
| 出版(發表)日期 | 2022-11-30 |
| 作品名稱 | Results related to the transverse Yamabe problem |
| 作品名稱(其他語言) | |
| 著者 | Pak Tung Ho |
| 單位 | |
| 出版者 | |
| 著錄名稱、卷期、頁數 | International Journal of Mathematics 33(14), 2250091 |
| 摘要 | Let (M,F,g0) be a Riemannian minimal foliation. The transverse Yamabe problem is to find a metric g in the basic conformal class of g0 such that the transverse scalar curvature of g is constant. We first study the uniqueness of the solutions of the transverse Yamabe problem. As a generalization of the transverse Yamabe problem, we study the problem of prescribing transverse scalar curvature by using geometric flow. We then prove a version of conformal Schwarz lemma on (M,F,g0) . Finally, we consider the transverse Yamabe soliton, which is the self-similar solution of the transverse Yamabe flow. |
| 關鍵字 | Transverse Yamabe problem;Riemannian foliation;transverse Yamabe flow |
| 語言 | en |
| ISSN | 1793-6519; 0129-167X |
| 期刊性質 | 國外 |
| 收錄於 | SCI |
| 產學合作 | |
| 通訊作者 | Pak Tung Ho |
| 審稿制度 | 是 |
| 國別 | SGP |
| 公開徵稿 | |
| 出版型式 | ,電子版,紙本 |
| 相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/122881 ) |