A novel algorithm for data clustering | |
---|---|
學年 | 89 |
學期 | 2 |
出版(發表)日期 | 2001-02-01 |
作品名稱 | A novel algorithm for data clustering |
作品名稱(其他語言) | |
著者 | 翁慶昌; Wong, Ching-chang; Chen, Chia-chong; Su, Mu-chun |
單位 | 淡江大學電機工程學系 |
出版者 | Elsevier |
著錄名稱、卷期、頁數 | Pattern Recognition 34(2), pp.425-442 |
摘要 | An efficient clustering algorithm is proposed in an unsupervised manner to cluster the given data set. This method is based on regulating a similarity measure and replacing movable vectors so that the appropriate clusters are determined by a performance for the classification validity. The proposed clustering algorithm needs not to predetermine the number of clusters, to choose the appropriate cluster centers in the initial step, and to choose a suitable similarity measure according to the shapes of the data. The location of the cluster centers can be efficiently determined and the data can be correctly classified by the proposed method. Several examples are considered to illustrate the effectiveness of the proposed method. |
關鍵字 | Data clustering;Unsupervised classification |
語言 | en |
ISSN | 0031-3203 |
期刊性質 | 國外 |
收錄於 | |
產學合作 | |
通訊作者 | |
審稿制度 | 否 |
國別 | NLD |
公開徵稿 | |
出版型式 | ,紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/46125 ) |