Exact Uniqueness and Multiplicity Criteria for, and Steady State and Dynamic Behaviors of an Isothermal CSTR with General Autocatalytic Reactions. No Product R in Feed | |
---|---|
學年 | 73 |
學期 | 2 |
出版(發表)日期 | 1985-04-01 |
作品名稱 | Exact Uniqueness and Multiplicity Criteria for, and Steady State and Dynamic Behaviors of an Isothermal CSTR with General Autocatalytic Reactions. No Product R in Feed |
作品名稱(其他語言) | 進行通用型自催化反應之恒溫連續攪拌槽反應器之穩態唯一性與多重性之確切判定準則以及其穩態與動態之行為﹣﹣進料中不含產物R |
著者 | Chi, Jung-chang |
單位 | 淡江大學化學工程與材料工程學系 |
出版者 | 新竹市:中國化學工程學會 |
著錄名稱、卷期、頁數 | Journal of the Chinese Institute of Chemical Engineers=中國化學工程學會會誌 16(2), pp.133-144 |
摘要 | An isothermal continuous flow stirred tank reactor within which an autocatalytic reaction of the general type A→aR+P, -rA = k,C~C.R/ (1+k, CA)P, is taking place without feeding R is examined. Exact criteria for uniqueness and multiplicity of steady states as well as stable steady states are established. Steady state behavior with changing Damkohler number and dynamic reactor behavior on the phase plane are discussed. The maximal number of steady state solutions is found to be four for m< 1 and three for m>=l. The system can have at most two stable steady states. It is proven that all stable steady states are nodes, all unstable steady states are saddle points, and no limit cycles exist. Graphs showing regions of uniqueness and multiplicity of stable steady states in parameters space are given. 本文所探討的系統為恆溫連續攪拌槽反應器,在其中所進行的反應為通用型是之自催化反應 A→αR+P,-rA=K1CmaCmr/(1+K2CA)P,且反應器之進料不含R。我們建立了此系統穩態及穩定穩態之唯一性與多重性之確切判定準則。文中並討論隨Damköhler 數變之穩態行為以及在項平面上之反應器動態行為。若m<1,此系統最多可有四個穩態解;若m>=1,則最多只有三個。至於穩定之穩態則最多只有兩個。經證明,所有穩定之穩態皆為節點,所有不穩定之穩態皆為鞍點,兒系統不會有極限環圈存在。在參數空間之穩定穩態唯一性以及多重性之範圍並以圖表示之。 |
關鍵字 | 反應;反應器;自催化;恆溫;通用型;連續;攪拌槽 |
語言 | en |
ISSN | 0368-1653 |
期刊性質 | 國內 |
收錄於 | SCI |
產學合作 | |
通訊作者 | |
審稿制度 | |
國別 | TWN |
公開徵稿 | |
出版型式 | 紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/44308 ) |