標題:Abnormal Event Detection Using HOSF |
---|
學年 | 102 |
---|
學期 | 1 |
---|
發表日期 | 2013/12/16 |
---|
作品名稱 | Abnormal Event Detection Using HOSF |
---|
作品名稱(其他語言) | |
---|
著者 | Yen, Shwu-Huey; Wang, Chun-Hui |
---|
作品所屬單位 | 淡江大學資訊工程學系 |
---|
出版者 | |
---|
會議名稱 | The International Conference on IT Convergence and Security (ICITCS 2013) |
---|
會議地點 | Macau |
---|
摘要 | In this paper a simple and effective crowd behavior normality method is proposed. We use the histogram of oriented social force (HOSF) as the feature vector to encode the observed events of a surveillance video. A dictionary of codewords is trained to include typical HOSFs. To detect whether an event is normal is accomplished by comparing how similar to the closest codeword via z-value. The proposed method includes the following characteristic: (1) the training is automatic without human labeling; (2) instead of object tracking, the method integrates particles and social force as feature descriptors; (3) z-score is used in measuring the normality of events. The method is testified by the UMN dataset with promising results. |
---|
關鍵字 | normality;crowd;social force (SF);histogram of oriented social force (HOSF);z-value |
---|
語言 | 英文 |
---|
收錄於 | |
---|
會議性質 | 國際 |
---|
校內研討會地點 | |
---|
研討會時間 | 20131216~20131218 |
---|
通訊作者 | |
---|
國別 | 澳門 |
---|
公開徵稿 | Y |
---|
出版型式 | 電子版 |
---|
出處 | Proceedings of the International Conference on IT Convergence and Security (ICITCS 2013), 4p. |
---|
相關連結 | |
---|
SDGs | |
---|
|
Google+ 推薦功能,讓全世界都能看到您的推薦!