Numerical solutions to inverse nodal problems for the Sturm–Liouville operator and their applications. | |
---|---|
學年 | 113 |
學期 | 1 |
出版(發表)日期 | 2025-01-13 |
作品名稱 | Numerical solutions to inverse nodal problems for the Sturm–Liouville operator and their applications. |
作品名稱(其他語言) | |
著者 | Wang, Yu Ping; Tsai, Tzong-Mo; Akbarpoor, Shahrbanoo; Shieh, Chung-Tsun |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | Journal of Inverse and Ill-posed Problems 33( 2), pp. 269-280. |
摘要 | In this paper, we apply numerical methods to study inverse nodal problems for the Sturm–Liouville operator. At first, we find an approximate function of the potential from the nodal points of the ( n + 1 ) -th eigenfunction and three constants via the second kind Chebyshev wavelet method (SCW). We have a sharp condition for uniform convergence of Chebyshev series and an error estimate between the approximate solution and exact solution of the potential. Then, a numerical example is provided to show that the approximate solutions become more accurate and the errors decrease as the values of n increase. Also, we show the comparison of SCW with Bernstein method. Finally, we present an application of numerical solutions to reconstruct the potential from parts of nodal set and its mean value. Compared with some well-known results, the nodal data used here is least. |
關鍵字 | Inverse nodal problem; Sturm–Liouville operator; SCW; application; uniqueness |
語言 | en |
ISSN | |
期刊性質 | 國外 |
收錄於 | SCI Scopus |
產學合作 | |
通訊作者 | Y. P. Wang |
審稿制度 | 是 |
國別 | DEU |
公開徵稿 | |
出版型式 | ,電子版,紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/127340 ) |
SDGS | 優質教育,夥伴關係 |