|
學年
|
114 |
|
學期
|
1 |
|
出版(發表)日期
|
2025-12-25 |
|
作品名稱
|
Composite Machine Learning System for Real-Time Response to Negative Online Reviews: A Case Study Based on the Negative Reinforcement Model of Digital Marketing † |
|
作品名稱(其他語言)
|
|
|
著者
|
Chien-Hung Lai1 , Yaonan Hung2,* , Yi Lin3 and Tzu-Shuang Liu3 |
|
單位
|
|
|
出版者
|
|
|
著錄名稱、卷期、頁數
|
Eng. Proc. 2025, 120(1), 5; https://doi.org/10.3390/engproc2025120005 |
|
摘要
|
This research proposes a composite machine learning (ML) framework for real-time response to negative online reviews, grounded in the psychological principle of negative reinforcement. By integrating K-means clustering to group reviews by thematic similarity and bidirectional encoder representations from transformer (BERT)-based sentiment analysis to assess emotional tone, and the system identifies high-risk clusters requiring marketing intervention. Customized response strategies are designed based on cluster sentiment intensity, and their effectiveness can be evaluated via sentiment transformation functions. The proposed model provides a practical and adaptive approach to digital marketing, enabling brands to respond rapidly, reduce dissatisfaction, and enhance consumer trust in a data-driven environment. |
|
關鍵字
|
negative reinforcement; psychological; sentiment analysis; BERT; K-means |
|
語言
|
en |
|
ISSN
|
|
|
期刊性質
|
國外 |
|
收錄於
|
|
|
產學合作
|
|
|
通訊作者
|
洪耀南 hung Yaonan |
|
審稿制度
|
1 |
|
國別
|
JPN |
|
公開徵稿
|
|
|
出版型式
|
,電子版,紙本 |