Deep-Learning-Based Risk Prediction with Urban Sensing Data for Consumer Driving Safety
學年 113
學期 1
發表日期 2024-10-29
作品名稱 Deep-Learning-Based Risk Prediction with Urban Sensing Data for Consumer Driving Safety
作品名稱(其他語言)
著者 Kun-Yu Lin;Pei-Yi Liu;Chih-Lin Hu;Sheng-Zhi Huang;Yung-Hui Chen;Lin Hui
作品所屬單位
出版者
會議名稱 2024 IEEE 13th Global Conference on Consumer Electronics (GCCE)
會議地點 Kitakyushu, Japan
摘要 With the provision of IoT-driven and user-provided sensing data sources in smart cities, we take advantage of deep learning techniques to analyze the spatio-temporal traffic data and predict traffic risks for driving safety. Our study continues to collect the traffic data from multiple sensing sources, and meanwhile adopts both CNN and LSTM to interpret the data collection in spatial and temporal dimensions. Thus, a novel traffic risk prediction scheme based on CNN and LSTM, named TRP-CL, is proposed to generate a traffic warning map of risks and hazard situations on a grid-scaled city map. Not only a theoretic formation but also an experimental implementation of the TRP-CL scheme are made to show the practical feasibility.
關鍵字
語言 en_US
收錄於
會議性質 國際
校內研討會地點
研討會時間 20241029~20241101
通訊作者
國別 USA
公開徵稿
出版型式
出處
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/127935 )