學年
|
113 |
學期
|
1 |
出版(發表)日期
|
2024-10-18 |
作品名稱
|
Online Action Detection Incorporating an Additional Action Classifier |
作品名稱(其他語言)
|
|
著者
|
Hsu, M.-H., Hsu, C.-C., Wang, Y.-T., Huang, S.-K., Chien, Y.-H. |
單位
|
|
出版者
|
|
著錄名稱、卷期、頁數
|
Electronics, vol.13, 4110 |
摘要
|
Most online action detection methods focus on solving a (K + 1) classification problem, where the additional category represents the ‘background’ class. However, training on the ‘background’ class and managing data imbalance are common challenges in online action detection. To address these issues, we propose a framework for online action detection by incorporating an additional pathway between the feature extractor and online action detection model. Specifically, we present one configuration that retains feature distinctions for fusion with the final decision from the Long Short-Term Transformer (LSTR), enhancing its performance in the (K + 1) classification. Experimental results show that the proposed method achieves an accuracy of 71.2% in mean Average Precision (mAP) on the Thumos14 dataset, outperforming the 69.5% achieved by the original LSTR method. |
關鍵字
|
online action detection; LSTR; action classification |
語言
|
en |
ISSN
|
|
期刊性質
|
國外 |
收錄於
|
SCI
|
產學合作
|
|
通訊作者
|
Yin-Tien Wang |
審稿制度
|
是 |
國別
|
CHE |
公開徵稿
|
|
出版型式
|
,電子版 |