Inverse resonance problem with partial information on the interval
學年 111
學期 1
出版(發表)日期 2022-09-01
作品名稱 Inverse resonance problem with partial information on the interval
作品名稱(其他語言)
著者 Lung-Hui Chen; Tzong-Mo Tsai; Chung-Tsun Shieh
單位
出版者
著錄名稱、卷期、頁數 Applicable Analysis 101(14), p.4970–4981
摘要 We consider the inverse resonance problem in scattering theory. In one-dimensional setting, the scattering matrix consists of 2×2 entries of meromorphic functions. The resonances are defined as the poles of the meromorphic determinant. For the compactly supported perturbation, we are able to quantitatively estimate the zeros and poles of each meromorphic entry. The size of potential support is connected to the zero density of scattered wave field due to the form of Fourier transform. We will investigate certain properties of Fourier transforms in scattering theory and derive the inverse uniqueness on scattering source given certain knowledge on the perturbation and all the given resonances.
關鍵字 Resonance;wave scattering;Schrödinger equation;value distribution theory;Faddeev theory
語言 en
ISSN 0003-6811;1563-504X
期刊性質 國外
收錄於 SCI Scopus
產學合作
通訊作者
審稿制度
國別 GBR
公開徵稿
出版型式 ,電子版,紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/122886 )

SDGS 優質教育,夥伴關係