Inverse resonance problem with partial information on the interval | |
---|---|
學年 | 111 |
學期 | 1 |
出版(發表)日期 | 2022-09-01 |
作品名稱 | Inverse resonance problem with partial information on the interval |
作品名稱(其他語言) | |
著者 | Lung-Hui Chen; Tzong-Mo Tsai; Chung-Tsun Shieh |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | Applicable Analysis 101(14), p.4970–4981 |
摘要 | We consider the inverse resonance problem in scattering theory. In one-dimensional setting, the scattering matrix consists of 2×2 entries of meromorphic functions. The resonances are defined as the poles of the meromorphic determinant. For the compactly supported perturbation, we are able to quantitatively estimate the zeros and poles of each meromorphic entry. The size of potential support is connected to the zero density of scattered wave field due to the form of Fourier transform. We will investigate certain properties of Fourier transforms in scattering theory and derive the inverse uniqueness on scattering source given certain knowledge on the perturbation and all the given resonances. |
關鍵字 | Resonance;wave scattering;Schrödinger equation;value distribution theory;Faddeev theory |
語言 | en |
ISSN | 0003-6811;1563-504X |
期刊性質 | 國外 |
收錄於 | SCI Scopus |
產學合作 | |
通訊作者 | |
審稿制度 | 是 |
國別 | GBR |
公開徵稿 | |
出版型式 | ,電子版,紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/122886 ) |
SDGS | 優質教育,夥伴關係 |