Effect of COD:N ratio on biological nitrogen removal using full-scale step-feed in municipal wastewater treatment plants
學年 109
學期 1
出版(發表)日期 2020-10-01
作品名稱 Effect of COD:N ratio on biological nitrogen removal using full-scale step-feed in municipal wastewater treatment plants
作品名稱(其他語言)
著者 Supaporn Phanwilai; Pongsak Noophan; Chi-Wang Li; Kwang-Ho Choo
單位
出版者
著錄名稱、卷期、頁數 Sustainable Environment Research 30, 24
摘要 This study investigated the effect of low and high chemical oxygen demand (COD):N ratios on biological nitrogen removal and microbial distributions in full-scale step-feed (SF) municipal wastewater treatment plants (WWTPs) in Thailand (SF1) and Taiwan (SF2). The SF1 WWTP had a low COD:N (4:1) ratio, a long solids retention time (SRT) (> 60 d), and low dissolved oxygen (DO) conditions (0.2 mg L− 1 in anoxic tank and 0.9 mg L− 1 in aerobic tank). The total nitrogen (TN) removal efficiency was 48%. The SF2 WWTP had a high COD:N (10:1) ratio, a short SRT (7 d), and high DO (0.6 mg L− 1 in anoxic tank and 1.8 mg L− 1 in aerobic tank). The TN removal efficiency was 61%. The nitrification and denitrification rates from these two plants were inadequate. Using a quantitative polymerase chain reaction (qPCR) technique, the populations of ammonium oxidizing bacteria (AOB) and ammonium oxidizing archaea were quantified. Measurement of ammonia monooxygenase (amoA) gene abundances identified these AOB: Nitrosomonas sp., Nitrosospira sp., Nitrosoccus sp. and Zoogloea sp. Higher amounts of the archaeal-amoA gene were found with long SRT, lower DO and COD:N ratios. Abundance of Nitrobacter sp. was slightly higher than Nitrospira sp. at the SF1, while abundance of Nitrobacter sp. was two orders of magnitude greater than Nitrospira sp. at the SF2. More denitrifying bacteria were of the nirS-type than the nirK-type, especially at higher COD:N ratio. Most bacteria belong to the phyla Acidobacteria, Actinobacteria Bacteroidetes, Chloroflexi, Proteobacteria. The results from this work showed that insufficient carbon sources at the SF1 and high DO concentration in anoxic tank of SF2 adversely affected nitrogen removal efficiencies. In further research work, advanced techniques on the next generation sequencing with different variable regions should be recommended in full-scale WWTPs.
關鍵字 Biological nitrogen removal;COD:N;Full-scale;Step-feed
語言 en
ISSN 2468-2039
期刊性質 國外
收錄於 SCI
產學合作
通訊作者
審稿制度
國別 GBR
公開徵稿
出版型式 ,電子版
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/119363 )

SDGS 潔淨水與衛生