Existence of traveling wave solutions to a nonlocal scalar equation with sign-changing kernel | |
---|---|
學年 | 108 |
學期 | 2 |
出版(發表)日期 | 2020-07-15 |
作品名稱 | Existence of traveling wave solutions to a nonlocal scalar equation with sign-changing kernel |
作品名稱(其他語言) | |
著者 | Shin-Ichiro Ei; Jong-Shenq Guo; Hiroshi Ishii; Chin-Chin Wu |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | Journal of Mathematical Analysis and Applications 487(2), 124007 |
摘要 | In this paper, we study the existence of traveling wave solutions connecting two constant states to a nonlocal scalar equation with sign-changing kernel. A typical example of such kernel in the neural fields is the Mexican hat type function. We first introduce a new notion of upper-lower-solution for the equation of wave profile for a given wave speed. Then, with the help of Schauder's fixed point theorem, we construct two different pairs of upper-lower-solutions to obtain traveling waves for a continuum of wave speeds under two different assumptions. Due to the sign-changing nature of the kernel, the wave profiles may take both positive and negative values. Finally, we analyze the limit of the right-hand tail of wave profiles. Under some further condition on the wave speeds, we prove that the right-hand tail limit of the wave profile does exist. In particular, we obtain the existence of nonnegative traveling waves connecting the unstable state 0 and the stable state 1 for wave speeds large enough. |
關鍵字 | Traveling wave;Wave speed;Nonlocal equation;Sign-changing kernel |
語言 | en_US |
ISSN | 1096-0813 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | Jong-Shenq Guo |
審稿制度 | 是 |
國別 | USA |
公開徵稿 | |
出版型式 | ,電子版,紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118761 ) |