標題:Existence of traveling wave solutions to a nonlocal scalar equation with sign-changing kernel |
---|
學年 | 108 |
---|
學期 | 2 |
---|
出版(發表)日期 | 2020/07/15 |
---|
作品名稱 | Existence of traveling wave solutions to a nonlocal scalar equation with sign-changing kernel |
---|
作品名稱(其他語言) | |
---|
著者 | Shin-Ichiro Ei; Jong-Shenq Guo; Hiroshi Ishii; Chin-Chin Wu |
---|
單位 | |
---|
出版者 | |
---|
著錄名稱、卷期、頁數 | Journal of Mathematical Analysis and Applications 487(2), 124007 |
---|
摘要 | In this paper, we study the existence of traveling wave solutions connecting two constant states to a nonlocal scalar equation with sign-changing kernel. A typical example of such kernel in the neural fields is the Mexican hat type function. We first introduce a new notion of upper-lower-solution for the equation of wave profile for a given wave speed. Then, with the help of Schauder's fixed point theorem, we construct two different pairs of upper-lower-solutions to obtain traveling waves for a continuum of wave speeds under two different assumptions. Due to the sign-changing nature of the kernel, the wave profiles may take both positive and negative values. Finally, we analyze the limit of the right-hand tail of wave profiles. Under some further condition on the wave speeds, we prove that the right-hand tail limit of the wave profile does exist. In particular, we obtain the existence of nonnegative traveling waves connecting the unstable state 0 and the stable state 1 for wave speeds large enough. |
---|
關鍵字 | Traveling wave;Wave speed;Nonlocal equation;Sign-changing kernel |
---|
語言 | 英文(美國) |
---|
ISSN | 1096-0813 |
---|
期刊性質 | 國外 |
---|
收錄於 | SCI; |
---|
產學合作 | |
---|
通訊作者 | Jong-Shenq Guo |
---|
審稿制度 | 是 |
---|
國別 | 美國 |
---|
公開徵稿 | |
---|
出版型式 | ,電子版,紙本 |
---|
相關連結 | |
---|
SDGs | |
---|
|
Google+ 推薦功能,讓全世界都能看到您的推薦!