A Dynamic Hierarchical Fuzzy Neural Network for A General Continuous Function | |
---|---|
學年 | 97 |
學期 | 1 |
出版(發表)日期 | 2008-09-23 |
作品名稱 | A Dynamic Hierarchical Fuzzy Neural Network for A General Continuous Function |
作品名稱(其他語言) | |
著者 | W. Y. Wang, I.H. Li, S.C. Li, M.S. Tsai, and S.F Su |
單位 | |
出版者 | |
著錄名稱、卷期、頁數 | International Journal of Fuzzy Systems 11(2), p.130-136 |
摘要 | A serious problem limiting the applicability of the fuzzy neural networks is the "curse of dimensionality", especially for general continuous functions. A way to deal with this problem is to construct a dynamic hierarchical fuzzy neural network. In this paper, we propose a two-stage genetic algorithm to intelligently construct the dynamic hierarchical fuzzy neural network (HFNN) based on the merged-FNN for general continuous functions. First, we use a genetic algorithm which is popular for flowshop scheduling problems (GAFSP) to construct the HFNN. Then, a reduced-form genetic algorithm (RGA) optimizes the HFNN constructed by GAFSP. For a real-world application, the presented method is used to approximate the Taiwanese stock market. |
關鍵字 | Fuzzy systems;Conferences |
語言 | en |
ISSN | 1098-7584 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | |
審稿制度 | 是 |
國別 | DEU |
公開徵稿 | |
出版型式 | ,電子版 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115952 ) |