Early Detection of Driver Drowsiness by WPT and FLFNN Models | |
---|---|
學年 | 105 |
學期 | 1 |
發表日期 | 2016-10-09 |
作品名稱 | Early Detection of Driver Drowsiness by WPT and FLFNN Models |
作品名稱(其他語言) | |
著者 | Huang, Yo-Ping; Sari, Nila Novita; Lee, Tsu-Tian |
作品所屬單位 | |
出版者 | |
會議名稱 | 2016 IEEE International Conference on Systems, Man, and Cybernetics |
會議地點 | Budapest, Hungary |
摘要 | This paper presents a method that can detect driver’s drowsiness by using the wavelet packet transform (WPT) and functional linkbased fuzzy neural network (FLFNN) models. Drowsy drivers have been reported to be vulnerable to car accidents. Early detection of drowsiness can help alert drivers or passengers to provide a safety drive on the road. For those old models or cars without equipped with advanced high technologies, there is a dire need to install sensor devices that can effectively detect drowsy status of drivers at an early stage. Photoplethysmography (PPG) is a non-invasive optical technique that measures relative blood volume changes in the blood vessels and has been universally used for research and physiological study. We develop such PPG sensor devices to be installed on the steering wheel to detect the physiological conditions (such as normal to drowsy) by using parameters extracted from the heart rate variability (HRV) obtained from PPG signal calculation. Experimental results revealed that the proposed model is effective in assessing the drowsy levels of drivers. |
關鍵字 | |
語言 | en |
收錄於 | |
會議性質 | 國際 |
校內研討會地點 | 無 |
研討會時間 | 20161009~20161012 |
通訊作者 | |
國別 | HUN |
公開徵稿 | |
出版型式 | |
出處 | 2016 IEEE International Conference on Systems, Man, and Cybernetics |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/107606 ) |