Parameter Estimation of the Burr Type XII Distribution with a Progressively Interval-censored Scheme Using Genetic Algorithm | |
---|---|
學年 | 103 |
學期 | 2 |
發表日期 | 2015-03-28 |
作品名稱 | Parameter Estimation of the Burr Type XII Distribution with a Progressively Interval-censored Scheme Using Genetic Algorithm |
作品名稱(其他語言) | |
著者 | Tsai, Tzong-Ru; Jiang, Jyun-You; Lio, Yuhlong; Jiang, Nan; Fan, Ya-Yen |
作品所屬單位 | 淡江大學統計學系 |
出版者 | |
會議名稱 | The 3rd International Conference on Industrial Application Engineering 2015 |
會議地點 | Kitakyushu, Japan |
摘要 | Burr type XII distribution (BXIID) has been widely used to model lifetime data sets. The flexibility of the BXIID is established due to its two shape parameters. To save test time and cost, the BXIID parameters can be inferred by using the maximum likelihood estimation method based on a date set with incomplete lifetime information. But the maximum likelihood estimates (MLEs) of BXIID parameters could have a big bias and mean squared error (MSE) if the sample size is small or the MLEs are evaluated with improper initial parameters. In this study, a progressively interval-censored (PIC) scheme is used to implement the life test, and the Genetic Algorithm (GA) is applied to reduce the bias and MSEs of the MLEs of the BXIID parameters. An extensive Monte Carlo simulation was conducted to evaluate the estimation performance of the typical maximum likelihood estimation method (TMLEM) and GA. Simulation results show that the GA is competitive with the TMLEM in terms of resulting in a smaller bias and MSE in parameter estimation. |
關鍵字 | Burr type XII distribution; Genetic Algorithm;
 maximum likelihood estimation; Monte Carlo
 simulation; progressively interval-censored scheme |
語言 | en |
收錄於 | |
會議性質 | 國際 |
校內研討會地點 | |
研討會時間 | 20150328~20150331 |
通訊作者 | Tsai, Tzong-Ru |
國別 | JPN |
公開徵稿 | |
出版型式 | 電子版 |
出處 | Proceeding of the 3rd International Conference on Industrial Application Engineering 2015 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/101189 ) |
SDGS | 優質教育 |