The induction of nanographitic phase on Fe coated diamond films for the enhancement in electron field emission properties | |
---|---|
學年 | 101 |
學期 | 2 |
出版(發表)日期 | 2013-03-01 |
作品名稱 | The induction of nanographitic phase on Fe coated diamond films for the enhancement in electron field emission properties |
作品名稱(其他語言) | |
著者 | Kalpataru Panda; B. Sundaravel; B. K. Panigrahi; Chen, H.-C.; Huang, P.-C.; Shih, W.-C.; Lo, S.-C.; Lin, L.-J.; Lee, C.-Y.; Lin, I.-N. |
單位 | 淡江大學物理學系 |
出版者 | College Park: American Institute of Physics |
著錄名稱、卷期、頁數 | Journal of Applied Physics 113(9), 094305(9pages) |
摘要 | A thin layer of iron coating and subsequent post-annealing (Fe-coating/post-annealing) is seen to significantly enhance the electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films. The best EFE properties, with a turn on field (E0) of 1.98 V/μm and current density (Je) of 705 μA/cm2 at 7.5 V/μm, are obtained for the films, which were Fe-coated/post-annealed at 900 °C in H2 atmosphere. The mechanism behind the enhanced EFE properties of Fe coated/post-annealed UNCD films are explained by the microstructural analysis which shows formation of nanographitic phase surrounding the Fe (or Fe3C) nanoparticles. The role of the nanographitic phase in improving the emission sites of Fe coated/post-annealed UNCD films is clearly revealed by the current imaging tunneling spectroscopy (CITS) images. The CITS images clearly show significant increase in emission sites in Fe-coated/post-annealed UNCD films than the as-deposited one. Enhanced emission sites are mostly seen around the boundaries of the Fe (or Fe3C) nanoparticles which were formed due to the Fe-coating/post-annealing processes. Moreover, the Fe-coating/post-annealing processes enhance the EFE properties of UNCD films more than that on the microcrystalline diamond films. The authentic factor, resulting in such a phenomenon, is attributed to the unique granular structure of the UNCD films. The nano-sized and uniformly distributed grains of UNCD films, resulted in markedly smaller and densely populated Fe-clusters, which, in turn, induced more finer and higher populated nano-graphite clusters. |
關鍵字 | |
語言 | en |
ISSN | 0021-8979 |
期刊性質 | 國外 |
收錄於 | |
產學合作 | |
通訊作者 | |
審稿制度 | |
國別 | USA |
公開徵稿 | |
出版型式 | 紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/97198 ) |