MULTI-OBJECTIVE GENETIC-FUZZY DATA MINING | |
---|---|
學年 | 101 |
學期 | 1 |
出版(發表)日期 | 2012-10-01 |
作品名稱 | MULTI-OBJECTIVE GENETIC-FUZZY DATA MINING |
作品名稱(其他語言) | |
著者 | Chen, Chun-Hao; Hong, Tzung-Pei; Tseng, Vincent S.; Chen, Lien-Chin |
單位 | 淡江大學資訊工程學系 |
出版者 | Kumamoto: I C I C International |
著錄名稱、卷期、頁數 | International Journal of Innovative Computing, Information and Control 8(10A), pp.6551-6568 |
摘要 | Many approaches have been proposed for mining fuzzy association rules.The membership functions, which critically influence the final mining results, are difficult to define. In general, multiple criteria are considered when defining membership functions. In this paper, a multi-objective genetic-fuzzy mining algorithm is proposed for extracting membership functions and association rules from quantitative transactions.Two objective functions are used to find the Pareto front. The first one is the suitability of membership functions. It consists of the coverage factor and the overlap factor and is used to avoid two unsuitable types of membership function. The second one is the total number of large 1-itemsets from a given set of minimum support values. Experimental results show the effectiveness of the proposed approach in finding the Pareto-front membership functions. |
關鍵字 | Multi-objective optimization; Genetic algorithm; Fuzzy set; Fuzzy association rules; Data mining |
語言 | en |
ISSN | 1349-4198 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | Hong, Tzung-Pei |
審稿制度 | 是 |
國別 | JPN |
公開徵稿 | |
出版型式 | 紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96216 ) |