MULTI-OBJECTIVE GENETIC-FUZZY DATA MINING
學年 101
學期 1
出版(發表)日期 2012-10-01
作品名稱 MULTI-OBJECTIVE GENETIC-FUZZY DATA MINING
作品名稱(其他語言)
著者 Chen, Chun-Hao; Hong, Tzung-Pei; Tseng, Vincent S.; Chen, Lien-Chin
單位 淡江大學資訊工程學系
出版者 Kumamoto: I C I C International
著錄名稱、卷期、頁數 International Journal of Innovative Computing, Information and Control 8(10A), pp.6551-6568
摘要 Many approaches have been proposed for mining fuzzy association rules.The membership functions, which critically influence the fi nal mining results, are diffi cult to defi ne. In general, multiple criteria are considered when defi ning membership functions. In this paper, a multi-objective genetic-fuzzy mining algorithm is proposed for extracting membership functions and association rules from quantitative transactions.Two objective functions are used to find the Pareto front. The fi rst one is the suitability of membership functions. It consists of the coverage factor and the overlap factor and is used to avoid two unsuitable types of membership function. The second one is the total number of large 1-itemsets from a given set of minimum support values. Experimental results show the effectiveness of the proposed approach in fi nding the Pareto-front membership functions.
關鍵字 Multi-objective optimization; Genetic algorithm; Fuzzy set; Fuzzy association rules; Data mining
語言 en
ISSN 1349-4198
期刊性質 國外
收錄於 SCI
產學合作
通訊作者 Hong, Tzung-Pei
審稿制度
國別 JPN
公開徵稿
出版型式 紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/96216 )

機構典藏連結