A Neuro-Fuzzy Approach to System Identification | |
---|---|
學年 | 83 |
學期 | 1 |
發表日期 | 1994-12-15 |
作品名稱 | A Neuro-Fuzzy Approach to System Identification |
作品名稱(其他語言) | |
著者 | Su, Mu-Chun; Kao, Chien-Jen |
作品所屬單位 | 淡江大學電機工程學系 |
出版者 | |
會議名稱 | 1994 International Symposium on Artificial Neural Networks |
會議地點 | 臺南, 臺灣 |
摘要 | In this paper, we present an innovative approach to the identification of non-linear systems. The proposed neuro-fuzzy system identifier employs a hybrid clustering and least mean squared error (LMS) algorithm. The neuro- fuzzy system under consideration is implemented as an two- layer FHRCNN (fuzzy hyperrectangular composite neural network). The SDDL (supervised decision-directed learning) algorithm is used to find a set of hyperrectangles defined by the parameters of hidden nodes while the LMS algorithm estimates the connection weights from hidden nodes to output nodes. Furthermore, based on the hybrid learning rule, the fuzzy neural networks can evolve automatically to acquire a set of fuzzy if-then rules for approximating the input/output functions of considered systems. A highly nonlinear system is used to test the proposed neural-fuzzy systems. The simulation results demonstrate its feasibility and robustness. |
關鍵字 | 系統識別;類神經網路;模糊理論;System Identification;Neural Network;Fuzzy Theory |
語言 | en |
收錄於 | |
會議性質 | 國際 |
校內研討會地點 | |
研討會時間 | 19941215~19941217 |
通訊作者 | |
國別 | TWN |
公開徵稿 | Y |
出版型式 | 紙本 |
出處 | Proceedings of 1994 International Symposium on Artificial Neural Networks,頁495-500 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95870 ) |