On the distinguished eigenvalues of a cone-preserving map | |
---|---|
學年 | 78 |
學期 | 2 |
出版(發表)日期 | 1990-04-01 |
作品名稱 | On the distinguished eigenvalues of a cone-preserving map |
作品名稱(其他語言) | |
著者 | Tam, Bit-Shun |
單位 | 淡江大學數學學系 |
出版者 | Philadelphia: Elsevier Inc. |
著錄名稱、卷期、頁數 | Linear Algebra and Its Applications 131(C), pp.17-37 |
摘要 | We generalize many known results on a nonnegative matrix concerning linear inequalities, Collatz-Wielandt sets, and generalized eigenvectors to the setting of a matrix preserving a (finite-dimensional) proper cone. A simple cone-theoretic proof is given for the nonnegative-basis theorem for the algebraic eigenspace of a nonnegative matrix. The result is also extended to a matrix preserving a polyhedral cone. Given proper cones K1 and K2 in different euclidean spaces, a necessary and sufficient condition is also obtained for the existence of a nonzero matrix X which takes K2 into K1 and satisfies AX = XB, where A, B are given matrices preserving K1 and K2 respectively. This extends and answers a recent open question posed by Hartwig. |
關鍵字 | |
語言 | en |
ISSN | 0024-3795 |
期刊性質 | 國外 |
收錄於 | SCI |
產學合作 | |
通訊作者 | Tam, Bit-Shun |
審稿制度 | |
國別 | USA |
公開徵稿 | |
出版型式 | 紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41378 ) |