A Two-Stage Multi-Objective Genetic-Fuzzy Mining Algorithm | |
---|---|
學年 | 101 |
學期 | 2 |
發表日期 | 2013-04-29 |
作品名稱 | A Two-Stage Multi-Objective Genetic-Fuzzy Mining Algorithm |
作品名稱(其他語言) | |
著者 | Chun-Hao Chen Ji-Syuan He Tzung-Pei Hong |
作品所屬單位 | 資訊工程學系暨研究所 |
出版者 | |
會議名稱 | 2013 IEEE Symposium Series on Computational Intelligence |
會議地點 | Singapore |
摘要 | In this paper, we propose a two-stage multi-objective fuzzy mining algorithm for dealing with linguistic knowledge discovery. In the first stage, the multi-objective genetic lgorithm is used to derive a set of non-dominated membership functions (Pareto solutions) with two objective functions. In the second stage, the clustering technique is utilized to find representative solutions from the Pareto solutions. The epresentative solutions could be employed to mine fuzzy association rules according to the favorites of decision makers. Experiments on a simulation dataset are made and the results show the effectiveness of the proposed algorithm. |
關鍵字 | Multi-objective genetic algorithm, clustering technique, membership function, taxonomy, fuzzy association rule. |
語言 | en_US |
收錄於 | EI |
會議性質 | 國際 |
校內研討會地點 | |
研討會時間 | |
通訊作者 | Tzung-Pei Hong |
國別 | |
公開徵稿 | Y |
出版型式 | 電子版 |
出處 | SSCI |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88828 ) |