Extracting the Critical Frequency Bands to Classify Vigilance States of Rats by Using a Novel Feature Selection Algorithm
學年 101
學期 2
發表日期 2013-02-24
作品名稱 Extracting the Critical Frequency Bands to Classify Vigilance States of Rats by Using a Novel Feature Selection Algorithm
作品名稱(其他語言)
著者 Chou, Chien-Hsing; Kuo, Chung-Chih; Yu, Zong-En; Tai1, Hsien-Pang; Chen, Ke-Wei
作品所屬單位 淡江大學電機工程學系
出版者
會議名稱 2013 2nd International Conference on Information Computer Application (ICICA 2013)
會議地點 Rome, Italy
摘要 Identifying mammalian vigilance states has recently become an important topic in biological science research. The biological researchers concern not only to improve the accuracy rate for classifying the vigilance states, but also to extract the meaningful frequency bands. In this study, we propose a novel feature selection to extract the critical frequency bands of rat’s EEG signals. The proposed algorithm adopts the concept of neighborhood relation during adding and eliminating a candidate feature. In the experiments, the proposed method shows better accuracy rate, and find out the feature subset which locate on the critical frequency bands for recognizing rat’s vigilance states.
關鍵字 feature selection;frequency band;pattern recognition;vigilance states
語言 en
收錄於
會議性質 國際
校內研討會地點
研討會時間 20130224~20130225
通訊作者
國別 ITA
公開徵稿 Y
出版型式 電子版
出處 2013 2nd International Conference on Information Computer Application (ICICA 2013), 4p.
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/81287 )

機構典藏連結