Mining Test Results to Personalise and Refine Web-Based Courses | |
---|---|
學年 | 98 |
學期 | 2 |
出版(發表)日期 | 2010-07-01 |
作品名稱 | Mining Test Results to Personalise and Refine Web-Based Courses |
作品名稱(其他語言) | |
著者 | Hsu, Hui-Huang |
單位 | 淡江大學資訊工程學系 |
出版者 | Olney: Inderscience Enterprises |
著錄名稱、卷期、頁數 | International Journal of Applied Systemic Studies 3(2), pp.183-191 |
摘要 | Providing appropriate learning content to each student is a key to the success of a web-based distance learning system. Student test results can be an important feedback for the instructor to re-evaluate the course content. A Test Result Feedback (TRF) model that analyses the relationship between student learning time and the corresponding test result is developed. The model can give the instructor crucial information for course content refinement. It can also suggest the student with a personalised remedial course or appropriate advanced courses for further study. All these can be done automatically without interfering with the student's learning and/or increasing the instructor's working load. In our design, all web courses are dynamically assembled with selected course units. |
關鍵字 | distance education;web mining;personalised courses;course refinement; TRF;test results feedback;feedback models;e-learning;electronic learning;online learning;appropriate learning content;distance learning |
語言 | en |
ISSN | 1751-0589; 1751-0597 |
期刊性質 | 國外 |
收錄於 | EI |
產學合作 | |
通訊作者 | Hsu, Hui-Huang |
審稿制度 | 是 |
國別 | GBR |
公開徵稿 | |
出版型式 | 紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/59938 ) |