Detection of Line-Symmetry Clusters
學年 100
學期 1
出版(發表)日期 2011-08-01
作品名稱 Detection of Line-Symmetry Clusters
作品名稱(其他語言)
著者 Hsieh, Yi-Zeng; Su, Mu-Chun; Chou, Chien-Hsing; Wang, Pa-Chun
單位 淡江大學電機工程學系
出版者 Kumamoto: I C I C International
著錄名稱、卷期、頁數 International Journal of Innovative Computing, Information and Control 7(8), pp.5027-5043
摘要 Many real-world and man-made objects are symmetry. Therefore, it is reasonable to assume that some kinds of symmetry may exist in data clusters. The most common type of symmetry is line symmetry. In this paper, we propose a line symmetry distance measure. Based on the proposed line symmetry distance, a modified version of the K-means algorithm can be used to partition data into clusters with different geometrical shapes. Several data sets are used to test the performance of the proposed modified version of the K-means algorithm incorporated with the line symmetry distance.
關鍵字 Cluster analysis; Clustering algorithm; Symmetry; Distance measure
語言 en
ISSN 1349-4198
期刊性質 國外
收錄於 SCI
產學合作
通訊作者
審稿制度
國別 JPN
公開徵稿
出版型式 紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/55827 )

機構典藏連結