教師資料查詢 | 類別: 期刊論文 | 教師: 吳漢銘 Han-ming Wu (瀏覽個人網頁)

標題:Iterative Sliced Inverse Regression for Segmentation of Ultrasound and MR Images
學年
學期
出版(發表)日期2007/07/01
作品名稱Iterative Sliced Inverse Regression for Segmentation of Ultrasound and MR Images
作品名稱(其他語言)
著者吳漢銘; Lu, H. H.-S
單位淡江大學數學學系
出版者
著錄名稱、卷期、頁數Pattern Recognition 40(12), pp.3492-3502
摘要In this study, we propose an integrated approach based on iterative sliced inverse regression (ISIR) for the segmentation of ultrasound and magnetic resonance (MR) images. The approach integrates two stages. The first is the unsupervised clustering which combines multidimensional scaling (MDS) with K-Means. The dimension reduction based on MDS is employed to obtain fewer representative variates as input variables for K-Means. This step intends to generate the initial group labels of the training data for the second stage of supervised segmentation. We then combine the SIR with the nearest mean classifier (NMC) or the support vector machine (SVM) to iteratively update the group labels for supervised segmentation. The method of SIR is introduced by Li [Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 86 (1991) 316–342] to explore the effective dimension reduction (e.d.r.) directions from the training data embedded in high-dimensional space. The test data are then projected onto these directions and the classifiers are further applied to classify the test data. The integrated approach based on ISIR is evaluated on simulated and clinical images, which include ultrasound and MR images. The evaluation results indicate that this approach provides an improvement of image segmentation over the methods to be compared without dimension reduction.
關鍵字Unsupervised clustering;K-Means;Dimension reduction;Multidimensional scaling;Sliced inverse regression;Nearest mean classifier;Support vector machines
語言英文
ISSN0031-3203;1873-5142
期刊性質國外
收錄於
產學合作
通訊作者
審稿制度
國別荷蘭
公開徵稿
出版型式,電子版,紙本
相關連結
SDGs
Google+ 推薦功能,讓全世界都能看到您的推薦!