| Construction of graphs with given circular flow number. | |
|---|---|
| 學年 | 91 |
| 學期 | 2 |
| 出版(發表)日期 | 2003-07-07 |
| 作品名稱 | Construction of graphs with given circular flow number. |
| 作品名稱(其他語言) | |
| 著者 | 潘志實 |
| 單位 | 淡江大學數學學系 |
| 出版者 | |
| 著錄名稱、卷期、頁數 | J. Graph Theory 43, p.304-318 |
| 摘要 | Suppose r ≥ 2 is a real number. A proper r-flow of a directed multi-graph equation image is a mapping equation image such that (i) for every edge equation image, equation image; (ii) for every vertex equation image, equation image. The circular flow number of a graph G is the least r for which an orientation of G admits a proper r-flow. The well-known 5-flow conjecture is equivalent to the statement that every bridgeless graph has circular flow number at most 5. In this paper, we prove that for any rational number r between 2 and 5, there exists a graph G with circular flow number r. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 304–318, 2003 |
| 關鍵字 | graph;flow;circular flow number;rooted-flow;series join;parallel join;two-terminal graph |
| 語言 | en |
| ISSN | 1097-0118 |
| 期刊性質 | 國外 |
| 收錄於 | |
| 產學合作 | |
| 通訊作者 | |
| 審稿制度 | 否 |
| 國別 | USA |
| 公開徵稿 | |
| 出版型式 | ,電子版 |
| 相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/58703 ) |