Existence of periodic solutions for a system of delay differential equations | |
---|---|
學年 | 98 |
學期 | 1 |
出版(發表)日期 | 2009-12-01 |
作品名稱 | Existence of periodic solutions for a system of delay differential equations |
作品名稱(其他語言) | |
著者 | Hsu, Cheng-Hsiung; Yang, Suh-Yuh; Yang, Ting-Hui; Yang, Tzi-Sheng |
單位 | 淡江大學數學學系 |
出版者 | Kidlington: Pergamon |
著錄名稱、卷期、頁數 | Nonlinear Analysis: Theory, Methods & Applications 71(12), pp.6222–6231 |
摘要 | In this paper we mainly study the existence of periodic solutions for a system of delay differential equations representing a simple two-neuron network model of Hopfield type with time-delayed connections between the neurons. We first examine the local stability of the trivial solution, propose some sufficient conditions for the uniqueness of equilibria and then apply the Poincaré–Bendixson theorem for monotone cyclic feedback delayed systems to establish the existence of periodic solutions. In addition, a sufficient condition that ensures the trivial solution to be globally exponentially stable is also given. Numerical examples are provided to support the theoretical analysis. |
關鍵字 | Delay differential equation; Poincaré–Bendixson theorem; Periodic solution; Lyapunov functional; Global exponential stability |
語言 | en |
ISSN | 0362-546X |
期刊性質 | 國外 |
收錄於 | SCI EI |
產學合作 | |
通訊作者 | |
審稿制度 | 是 |
國別 | GBR |
公開徵稿 | |
出版型式 | 紙本 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/53530 ) |