On periodic solutions of a two-neuron network system with sigmoidal activation functions | |
---|---|
學年 | 94 |
學期 | 2 |
出版(發表)日期 | 2006-05-01 |
作品名稱 | On periodic solutions of a two-neuron network system with sigmoidal activation functions |
作品名稱(其他語言) | |
著者 | Hsu, Cheng-hsiung;Yang, Suh-yuh;Yang, Ting-hui;Yang, Tzi-sheng |
單位 | 淡江大學數學學系 |
出版者 | World Scientific Publishing |
著錄名稱、卷期、頁數 | International Journal of Bifurcation and Chaos 16(5), pp.1405-1417 |
摘要 | In this paper we study the existence, uniqueness and stability of periodic solutions for a two-neuron network system with or without external inputs. The system consists of two identical neurons, each possessing nonlinear feedback and connected to the other neuron via a nonlinear sigmoidal activation function. In the absence of external inputs but with appropriate conditions on the feedback and connection strengths, we prove the existence, uniqueness and stability of periodic solutions by using the Poincaré–Bendixson theorem together with Dulac's criterion. On the other hand, for the system with periodic external inputs, combining the techniques of the Liapunov function with the contraction mapping theorem, we propose some sufficient conditions for establishing the existence, uniqueness and exponential stability of the periodic solutions. Some numerical results are also provided to demonstrate the theoretical analysis. |
關鍵字 | |
語言 | en |
ISSN | 0218-1274 |
期刊性質 | 國外 |
收錄於 | |
產學合作 | |
通訊作者 | |
審稿制度 | 否 |
國別 | SGP |
公開徵稿 | |
出版型式 | ,電子版 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/53529 ) |