教師資料查詢 | 類別: 期刊論文 | 教師: 李家瑋 JIA-WEI LEE (瀏覽個人網頁)

標題:Analytical and numerical studies for solving Steklov eigenproblems by using the boundary integral equation method / boundary element method
學年108
學期2
出版(發表)日期2020/05/01
作品名稱Analytical and numerical studies for solving Steklov eigenproblems by using the boundary integral equation method / boundary element method
作品名稱(其他語言)
著者Jeng-Tzong Chen; Jia-Wei Lee; Kuen-Ting Lien
單位
出版者
著錄名稱、卷期、頁數Engineering Analysis with Boundary Elements 114, p.136-147
摘要The theory of boundary eigensolutions is developed for boundary value problems. It is general for boundary value problem. Steklov-Poincaré operator maps the values of a boundary condition of the solution of the Laplace equation in a domain to the values of another boundary condition. The eigenvalue is imbedded in the Dirichlet to Neumann (DtN) map. The DtN operator is called the Steklov operator. In this paper, we study the Steklov eigenproblems by using the dual boundary element method/boundary integral equation method (BEM/BIEM). First, we consider a circular domain. To analytically derive the eigensolution of the above shape, the closed-form fundamental solution of the 2D Laplace equation, ln(r), is expanded into degenerate kernel by using the polar coordinate system. After the boundary element discretization of the BIE for the Steklov eigenproblem, it can be transformed to a standard linear eigenequation. Problems can be effectively solved by using the dual BEM. Finally, we consider the annulus. Not only the Steklov problem but also the mixed Steklov eigenproblem for an annular domain has been considered.
關鍵字Boundary eigensolution;Steklov eigenproblems;The boundary integral equation method/boundary element method;Degenerate kernel
語言英文
ISSN1873-197X
期刊性質國內
收錄於SCI;
產學合作
通訊作者J. T. Chen
審稿制度
國別英國
公開徵稿
出版型式,電子版
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!