教師資料查詢 | 類別: 期刊論文 | 教師: 張麗秋 LI-CHIU CHANG (瀏覽個人網頁)

標題:Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
學年107
學期2
出版(發表)日期2019/02/01
作品名稱Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
作品名稱(其他語言)
著者Yanlai Zhou, Fi-John Chang, Li-Chiu Chang, I-Feng Kao, Yi-Shin Wang
單位
出版者
著錄名稱、卷期、頁數Journal of Cleaner Production 209, p.134-145
摘要Timely regional air quality forecasting in a city is crucial and beneficial for supporting environmental management decisions as well as averting serious accidents caused by air pollution. Artificial Intelligence-based models have been widely used in air quality forecasting. The Shallow Multi-output Long Short-Term Memory (SM-LSTM) model is suitable for regional multi-step-ahead air quality forecasting, while it commonly encounters spatio-temporal instabilities and time-lag effects. To overcome these bottlenecks and overfitting issues, this study proposed a Deep Multi-output LSTM (DM-LSTM) neural network model that were incorporated with three deep learning algorithms (i.e., mini-batch gradient descent, dropout neuron and L2 regularization) to configure the model for extracting the key factors of complex spatio-temporal relations as well as reducing error accumulation and propagation in multi-step-ahead air quality forecasting. The proposed DM-LSTM model was evaluated by three time series of PM2.5, PM10, and NOx simultaneously at five air quality monitoring stations in Taipei City of Taiwan. Results indicated that the loss function values (mean-square-error) of the SM-LSTM and DM-LSTM models in the testing stages at horizon t+4 were 0.87 and 0.72, respectively. The Gbench values of the DM-LSTM model in the testing stages for PM2.5, PM10, and NOx reached 0.95 at horizon t+1 and exceeded 0.81 at horizon t+4, respectively. Results demonstrated that the proposed DM-LSTM model incorporated with three deep learning algorithms could significantly improve the spatio-temporal stability and accuracy of regional multi-step-ahead air quality forecasts.
關鍵字Multi-output LSTM;Deep learning;Artificial intelligence (AI);Multi-step-ahead forecast;Air quality;Taipei city
語言英文(美國)
ISSN
期刊性質國外
收錄於SCI;EI;
產學合作
通訊作者
審稿制度
國別美國
公開徵稿
出版型式,電子版,紙本
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!