教師資料查詢 | 類別: 期刊論文 | 教師: 陳麗菁 Li Ching Chen (瀏覽個人網頁)

標題:A Note on Frequency Polygon Based on Weighted Sum of Binned Data
學年102
學期2
出版(發表)日期2014/04/01
作品名稱A Note on Frequency Polygon Based on Weighted Sum of Binned Data
作品名稱(其他語言)
著者Wen-Shuenn Deng; Jyh-Shyang Wu; Li-Ching Chen; Shun-Jie Ke
單位
出版者
著錄名稱、卷期、頁數Communications in Statistics – Theory and Methods 43(8), p.1666-1685
摘要We revisit the generalized midpoint frequency polygons of Scott (1985), and the edge frequency polygons of Jones et al. (1998 Jones, M.C., Samiuddin, M., Al-Harbey, A.H., Maatouk, T. A.H. (1998). The edge frequency polygon. Biometrika 85:235–239.
[Crossref], [Web of Science ®], [Google Scholar]
) and Dong and Zheng (2001 Dong, J.P., Zheng, C. (2001). Generalized edge frequency polygon for density estimation. Statist. Probab. Lett. 55:137–145.
[Crossref], [Web of Science ®], [Google Scholar]
). Their estimators are linear interpolants of the appropriate values above the bin centers or edges, those values being weighted averages of the heights of r, r ∈ N, neighboring histogram bins. We propose a simple kernel evaluation method to generate weights for binned values. The proposed kernel method can provide near-optimal weights in the sense of minimizing asymptotic mean integrated square error. In addition, we prove that the discrete uniform weights minimize the variance of the generalized frequency polygon under some mild conditions. Analogous results are obtained for the generalized frequency polygon based on linearly prebinned data. Finally, we use two examples and a simulation study to compare the generalized midpoint and edge frequency polygons.
關鍵字Edge frequency polygon;Kernel-based weights;Midpoint frequency polygon;Minimum variance weights;Mixture weights;Uniform weights
語言英文
ISSN
期刊性質國外
收錄於SCI;
產學合作
通訊作者
審稿制度
國別美國
公開徵稿
出版型式,電子版,紙本
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!