教師資料查詢 | 類別: 期刊論文 | 教師: 董崇禮 CHUNG-LI DONG (瀏覽個人網頁)

標題:A novel hybrid artificial photosynthesis system using MoS2 embedded in carbon nanofibers as electron relay and hydrogen evolution catalyst
學年106
學期1
出版(發表)日期2017/08/01
作品名稱A novel hybrid artificial photosynthesis system using MoS2 embedded in carbon nanofibers as electron relay and hydrogen evolution catalyst
作品名稱(其他語言)
著者F. Niu; C. L. Dong; C. Zhu; Y. C. Huang; M. Wang; J. Maier; Y. Yu; S. Shen
單位
出版者
著錄名稱、卷期、頁數Journal of Catalysis 352, p.35-41
摘要Inspired by photosynthesis in nature, artificial photosynthesis (AP) systems have been widely investigated in the context of energy and environmental research. Here we report a noble-metal-free AP system for visible-light-driven H2 generation from aqueous solutions consisting of fluorescein (FL) as photosensitizer, single-layer ultrasmall MoS2 nanoplates embedded in carbon nanofibers (CNF) as electron relay and redox catalyst, and triethanolamine (TEOA) as sacrificial electron donor. This CNF–MoS2/FL system exhibits outstanding H2 evolution performance, with an H2 generation rate that exceeds not only both MoS2/FL (by 100%) and CNF/FL (by 1100%), but also the Pt/FL system (by 40%). The excellent photocatalytic activity of this CNF–MoS2/FL system can be ascribed to the synergistic effects of CNF and MoS2 coupling: (1) the simultaneous presence of MoS2 with its delocalized and increased Mo 4d unoccupied states and of CNF with increased graphitic characteristics enables electron transfer from FL∗ to MoS2 via CNF electron relay; (2) the single-layered ultrasmall MoS2 nanoplates with short effective lengths for electron transfer and high density of reactive S-edges effectively catalyze the H2 evolution reaction (HER). The presented work successfully fabricated a highly efficient AP system for solar H2 production from a fully aqueous solution and indicated CNF–MoS2 as a promising candidate to replace Pt for solar fuel conversion.
關鍵字Artificial photosynthesisMoS2Carbon nanofibersHydrogen generation
語言英文
ISSN
期刊性質國外
收錄於SCI;
產學合作
通訊作者
審稿制度
國別中華民國
公開徵稿
出版型式,電子版
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!