Spatial-Temporal Model for Count Data | |
---|---|
學年 | 103 |
學期 | 2 |
發表日期 | 2015-06-27 |
作品名稱 | Spatial-Temporal Model for Count Data |
作品名稱(其他語言) | |
著者 | Ya-Mei Chang |
作品所屬單位 | |
出版者 | |
會議名稱 | 第二十四屆南區統計研討會暨2015中華機率統計學會年會及學術研討會 |
會議地點 | 國立彰化師範大學進德校區, 彰化, 台灣 |
摘要 | In epidemiology, disease mapping using count data is a very important issue. Under a Poisson-lognormal model, we develop a spatial-temporal process. The log transformation of the conditional expected number of cases is decomposed as a linear combination of basis functions and a stationary process. The problem of mean and covariance estimations can be considered as a regression. A subset selection method of Lasso and group Lasso are used to choose a suitable subset of the basis functions and estimate the mean and covariances. This method can characterize either non-stationary or nearly stationary spatial processes, and is computationally efficient for large data sets. |
關鍵字 | Poisson-lognormal model;Spatial-temporal process;Disease maps;Lasso;group Lasso |
語言 | zh_TW |
收錄於 | |
會議性質 | 國內 |
校內研討會地點 | 無 |
研討會時間 | 20150627~20150628 |
通訊作者 | |
國別 | TWN |
公開徵稿 | |
出版型式 | |
出處 | 第二十四屆南區統計研討會暨2015中華機率統計學會年會及學術研討會 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106414 ) |
SDGS | 良好健康和福祉,尊嚴就業與經濟發展,產業創新與基礎設施 |