A knowledge-based approach to supervised incremental learning | |
---|---|
學年 | 82 |
學期 | 2 |
發表日期 | 1994-06-27 |
作品名稱 | A knowledge-based approach to supervised incremental learning |
作品名稱(其他語言) | |
著者 | Fu, Li-min; Hsu, Hui-huang; Principe, Jose C. |
作品所屬單位 | 淡江大學資訊工程學系 |
出版者 | Institute of Electrical and Electronics Engineers (IEEE) |
會議名稱 | Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on |
會議地點 | Orlando, FL, USA |
摘要 | How to learn new knowledge without forgetting old knowledge is a key issue in designing an incremental-learning neural network. In this paper, we present a rule-based connectionist approach in which old knowledge is preserved by bounding weight modifications. In addition, some heuristics are developed for avoiding overtraining of the network and adding new hidden units. The feasibility of this approach is demonstrated for classification problems including the iris and the promoter domains. |
關鍵字 | |
語言 | en |
收錄於 | |
會議性質 | |
校內研討會地點 | |
研討會時間 | 19940627~19940702 |
通訊作者 | |
國別 | USA |
公開徵稿 | |
出版型式 | |
出處 | Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on, vol.3, pp.1793-1798 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/37525 ) |