教師資料查詢 | 類別: 期刊論文 | 教師: 康尚文 KANG SHUNG-WEN (瀏覽個人網頁)

標題:Experimental Investigation of Fluid Flow and Heat Transfer in Microchannels
學年92
學期2
出版(發表)日期2004/03/01
作品名稱Experimental Investigation of Fluid Flow and Heat Transfer in Microchannels
作品名稱(其他語言)
著者康尚文; Kang, Shung-wen; 陳育堂; Chen, Yu-Tang; 杜文謙; Tu, Wen-chien; 蕭聰鑫; Hsiao, Tsung-Hsin
單位淡江大學機械與機電工程學系
出版者臺北縣淡江大學
著錄名稱、卷期、頁數淡江理工學刊=Tamkang journal of science and engineering 7(1)頁11-16
摘要Due to the high performance of electronic components, the heat generation is increasing dramatically. Heat dissipation becomes a significant issue in efficiency promotion and stable operation. Silicon based microchannel heat sink fabricated using semiconductor production technique plays an important role in cooling devices. Experimental tests and theoretical analyses were conducted to investigate the characteristics of fluid flow and heat transfer in microchannel heat sink in this paper, especially in the mechanism of bubble nucleation.
Methanol was used as the working fluid and flowed through microchannels with different hydraulic diameters ranging from 57−267 μm in the experiments. Experimental results of flow characteristics indicated that the flow behavior was in the laminar regime when Re = 50−850, the phenomena of early transition didn't exist. The phenomenon shows that the surface roughness, viscosity, and channel geometry have great effects on flow characteristics in microchannels.
Experimental results in heat transfer indicted that forced convection in microchannel heat sink exhibited excellent cooling
performance, especially in the phase change regime. It will be applied as heat removal and temperature control devices in high power electronic components. When the critical nucleate heat flux condition appeared, flow mechanism changed into fully developed nucleate boiling and accompanied with wall temperature decreased rapidly and pressure drop increased sharply. Experimental results also indicated that the critical bubble size of methanol was between 57−83 μm.
關鍵字Microchannel;Mechanism of Bubble Nucleation;Hydraulic Diameters;Critical Nucleate Heat Flux
語言英文
ISSN1560-6686
期刊性質國內
收錄於
產學合作
通訊作者
審稿制度
國別中華民國
公開徵稿
出版型式,電子版
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!