教師資料查詢 | 類別: 期刊論文 | 教師: 林慧珍 Lin Hwei-jen (瀏覽個人網頁)

標題:An Efficient GA-Based Clustering Technique
學年93
學期2
出版(發表)日期2005/06/01
作品名稱An Efficient GA-Based Clustering Technique
作品名稱(其他語言)
著者林慧珍; Lin, Hwei-jen; Yang, Fu-wen; Kao, Yang-ta
單位淡江大學資訊工程學系
出版者淡江大學
著錄名稱、卷期、頁數淡江理工學刊=Tamkang journal of science and engineering 8(2), pp.113-122
摘要In this paper, we propose a GA-based unsupervised clustering technique that selects cluster centers directly from the data set, allowing it to speed up the fitness evaluation by constructing a look-up table in advance, saving the distances between all pairs of data points, and by using binary representation rather than string representation to encode a variable number of cluster centers. More effective versions of operators for reproduction, crossover, and mutation are introduced. Finally, the Davies-Bouldin index is employed to measure the validity of clusters. The development of our algorithm has demonstrated an ability to properly cluster a variety of data sets. The experimental results show that the proposed algorithm provides a more stable clustering performance in terms of number of clusters and clustering results. This results in considerable less computational time required, when compared to other GA-based clustering algorithms.
關鍵字Unsupervised Clustering;Genetic Algorithms;Reproduction;Crossover;Mutation;Fitness;Cluster Validity
語言英文
ISSN1560-6686
期刊性質國內
收錄於EI;
產學合作
通訊作者
審稿制度
國別中華民國
公開徵稿
出版型式,電子版
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!