教師資料查詢 | 類別: 期刊論文 | 教師: 陳怡如 Yi-ju Chen (瀏覽個人網頁)

標題:ASSESSING GENERALIZED LINEAR MIXED MODELS USING RESIDUAL ANALYSIS
學年101
學期1
出版(發表)日期2012/08/01
作品名稱ASSESSING GENERALIZED LINEAR MIXED MODELS USING RESIDUAL ANALYSIS
作品名稱(其他語言)
著者Lin, Kuo-Chin; Chen, Yi-Ju
單位淡江大學統計學系
出版者Kumamoto: ICIC International
著錄名稱、卷期、頁數International Journal of Innovative Computing, Information and Control 8(8), pp.5693-5701
摘要A nonparametric smoothing method for assessing the adequacy of generalized linear mixed models (GLMMs) is developed. The proposed method is based on smoothing the residuals over continuous covariates to avoid the partition of continuous covariates on model checking. The global test statistic has a quadratic form and its formulae of expectation as well as variance are derived. The sampling distribution of the quadratic form test statistic is approximated by a scaled chi-squared distribution. For bandwidth selection, the leave-one-out cross-validation approach is recommendable for use. A longitudinal binary data set is utilized to demonstrate the proposed approach.
關鍵字
語言英文
ISSN1349-4198
期刊性質國外
收錄於EI
產學合作
通訊作者
審稿制度
國別日本
公開徵稿
出版型式紙本
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!