Speech Classification Based on Fuzzy Adaptive Resonance Theory
學年 95
學期 1
發表日期 2006-10-08
作品名稱 Speech Classification Based on Fuzzy Adaptive Resonance Theory
作品名稱(其他語言)
著者 Hsieh, Ching-Tang; Hsu, Chih-Hsu
作品所屬單位 淡江大學電機工程學系
出版者
會議名稱 9th Joint Conference on Information Sciences
會議地點 高雄, 臺灣
摘要 This paper presents a neuro-fuzzy system to speech classification. We propose a multi-resolution feature extraction technique to deal with adaptive frame size. We utilize fuzzy adaptive resonance theory (FART) to cluster each frame. FART was an extension to ART, performs clustering of its inputs via unsupervised learning. ART describes a family of self-organizing neural networks, capable of clustering arbitrary sequences of input patterns into stable recognition codes. In our experiments, the TIMIT database is used and extracts features of each phoneme. The performance of speech classification is 88.66%, demonstrate the effectiveness of the proposed system is encouraging.
關鍵字 Speech classification;Neuro-fuzzy system;Fuzzy ART
語言 en
收錄於
會議性質 國際
校內研討會地點
研討會時間 20061008~20061011
通訊作者
國別 TWN
公開徵稿 Y
出版型式 紙本
出處 Proceedings of 9th Joint Conference on Information Sciences,4頁
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95944 )

機構典藏連結