Speech Classification Based on Fuzzy Adaptive Resonance Theory | |
---|---|
學年 | 95 |
學期 | 1 |
發表日期 | 2006-10-08 |
作品名稱 | Speech Classification Based on Fuzzy Adaptive Resonance Theory |
作品名稱(其他語言) | |
著者 | Hsieh, Ching-Tang; Hsu, Chih-Hsu |
作品所屬單位 | 淡江大學電機工程學系 |
出版者 | |
會議名稱 | 9th Joint Conference on Information Sciences |
會議地點 | 高雄, 臺灣 |
摘要 | This paper presents a neuro-fuzzy system to speech classification. We propose a multi-resolution feature extraction technique to deal with adaptive frame size. We utilize fuzzy adaptive resonance theory (FART) to cluster each frame. FART was an extension to ART, performs clustering of its inputs via unsupervised learning. ART describes a family of self-organizing neural networks, capable of clustering arbitrary sequences of input patterns into stable recognition codes. In our experiments, the TIMIT database is used and extracts features of each phoneme. The performance of speech classification is 88.66%, demonstrate the effectiveness of the proposed system is encouraging. |
關鍵字 | Speech classification;Neuro-fuzzy system;Fuzzy ART |
語言 | en |
收錄於 | |
會議性質 | 國際 |
校內研討會地點 | |
研討會時間 | 20061008~20061011 |
通訊作者 | |
國別 | TWN |
公開徵稿 | Y |
出版型式 | 紙本 |
出處 | Proceedings of 9th Joint Conference on Information Sciences,4頁 |
相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/95944 ) |