教師資料查詢 | 類別: 期刊論文 | 教師: 黃富國 FU-KUO HUANG (瀏覽個人網頁)

標題:軟弱地盤深開挖設計之可靠度分析--以臺北市基河路案例為例
學年96
學期1
出版(發表)日期2007/12/01
作品名稱軟弱地盤深開挖設計之可靠度分析--以臺北市基河路案例為例
作品名稱(其他語言)
著者黃富國; 王淑娟
單位淡江大學水資源及環境工程學系
出版者臺北市中國土木水利工程學會
著錄名稱、卷期、頁數中國土木水利工程學刊=Journal of the Chinese Institute of Civil & Hydraulic Engineering 19(4)頁541-555
摘要本研究首先介紹結合類神經網路(ANN)及一階可靠度法(FORM)或蒙地卡羅模擬法(MCS)之可靠度分析技術(ANN-basedFORM、ANN-basedMCS)。接著以臺北市一軟弱地盤深開挖設計的可靠度分析為例,完整說明整個可靠度分析流程。此結合ANN、FORM或MCS技術之可靠度分析模式,在系統反應之模擬、計算效率之提昇,以及分析精度之改善上,相較於大地工程慣用之簡化法(如一階二次矩法,FOSM)具有非常明顯之優勢。透過案例研究與探討,本文具體提供了深開挖工程之可靠度設計(或性能設計)一個可資參考,且簡易、可行的落實方法,以及具風險觀念的安全量化評估指標。;In this study, a reliability evaluation method, integrated with artificial neural network (ANN) and first-order reliability method (FORM) or Monte-Carlo simulation (MCS), is explored. By performing a case study on the reliability of deep excavation within soft ground, an analysis procedure for reliability analysis is proposed. The evaluation model of ANN-based FORM or ANN-based MCS is superior to traditional reliability method, such as first-order second-moment method (FOSM), in view of many aspects, such as system modeling, computational efficiency, and analysis precision. Based on these methods, the reliability of different serviceability performance or limit states for braced excavation problems can be assessed easily, efficiently and accurately. The effectiveness of ground modification measures, once needed, against excavation failure can also be evaluated quantitatively. Hence, it will supply the deep excavations engineering with a powerful tool for safety evaluation when using the established reliability-based risk analysis and design method in this research. And also, excavations safety in metropolis will be guaranteed definitely.
關鍵字類神經網路; 一階可靠度法; 蒙地卡羅模擬法; 可靠度設計; Artificial neural network; First-order reliability method; Monte-Carlo simulation; Reliability-based design
語言中文
ISSN1015-5856
期刊性質國內
收錄於
產學合作
通訊作者
審稿制度
國別中華民國
公開徵稿
出版型式紙本
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!