On the distinguished eigenvalues of a cone-preserving map
學年 78
學期 2
出版(發表)日期 1990-04-01
作品名稱 On the distinguished eigenvalues of a cone-preserving map
作品名稱(其他語言)
著者 Tam, Bit-Shun
單位 淡江大學數學學系
出版者 Philadelphia: Elsevier Inc.
著錄名稱、卷期、頁數 Linear Algebra and Its Applications 131(C), pp.17-37
摘要 We generalize many known results on a nonnegative matrix concerning linear inequalities, Collatz-Wielandt sets, and generalized eigenvectors to the setting of a matrix preserving a (finite-dimensional) proper cone. A simple cone-theoretic proof is given for the nonnegative-basis theorem for the algebraic eigenspace of a nonnegative matrix. The result is also extended to a matrix preserving a polyhedral cone. Given proper cones K1 and K2 in different euclidean spaces, a necessary and sufficient condition is also obtained for the existence of a nonzero matrix X which takes K2 into K1 and satisfies AX = XB, where A, B are given matrices preserving K1 and K2 respectively. This extends and answers a recent open question posed by Hartwig.
關鍵字
語言 en
ISSN 0024-3795
期刊性質 國外
收錄於 SCI
產學合作
通訊作者 Tam, Bit-Shun
審稿制度
國別 USA
公開徵稿
出版型式 紙本
相關連結

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41378 )

機構典藏連結