教師資料查詢 | 類別: 會議論文 | 教師: 謝順金 HSIEH SHUN-CHIN (瀏覽個人網頁)

標題:類神經網路與統計分析方法應用於分類之比較研究
學年83
學期2
發表日期1995/05/27
作品名稱類神經網路與統計分析方法應用於分類之比較研究
作品名稱(其他語言)A Comparative Study on Neural Network and Statistical Analysis Approach for Classification
著者謝順金; 劉德忠
作品所屬單位淡江大學資訊管理學系
出版者臺北市中華民國資訊管理學會
會議名稱第六屆國際資訊管理學術研討會=Proceeding of 6th International on Information Management
會議地點桃園, 臺灣
摘要本論文之目的乃是期望以類神經網路之倒傳遞網路與統計分析方法(區別分析、LOGIT分析模式)架構分類模型,並就實證結果進行比較評估它們之間分類效果的優劣、適用性與限制。
於範例模擬測試結果顯示,在訓練樣本建構模式上,以類神經網路模式整體來說總正確率最高,模式配置最適當, LOGIT分析次之,區別分析表現最差;在測試樣本則以LOGIT分析最佳,類神經網路次之,區別分析不佳。在建構模式所花費時間上以類神經網路模式最多,LOGIT分析模式次之,區別分析模式最少。並且類神經網路發生過度適當(Overfitting)的風險則較另兩種方法高。;The aims of this thesis expect to construct classification models by using Back Propagation Network of Neural Network and Statistical Analysis Method (LOGIT, Discriminant Analysis). Besides, We compare the advantages, disadvantages, restrictions, adaptations among these methods.
The results come out by simulating many instances. The construction of training samples witness that hit ratio of Neural Network is the highest and the fitted, LOGIT is second and Discriminant Analysis is the worst. The construction of testing samples witness that hit ratio of LOGIT is the highest and Neural Network is second, Discriminant Analysis is the worst. Neural Network takes the longest period to construct these models, LOGIT is second and DiscriminantAnalysis is third. In addition Neural Network might occur more rate of overfitting than the others.
關鍵字分類;倒傳遞網路模式;I品IT分析棋式;區別分析棋式;過度適當;Classification;Back Propagation Network;LOGIT Model;Discriminant Analysis;Overfitting
語言中文
收錄於
會議性質國際
校內研討會地點
研討會時間19950527~19950528
通訊作者
國別中華民國
公開徵稿Y
出版型式
出處第六屆國際資訊管理學術研討會論文集Proceedings of the 6th International Conference on Information Management頁125-132
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!