教師資料查詢 | 類別: 期刊論文 | 教師: 何俊麟 HO, CHOON-LIN (瀏覽個人網頁)

標題:Quantum entanglement, unitary braid representation and Temperley-Lieb algebra
學年99
學期1
出版(發表)日期2010/11/01
作品名稱Quantum entanglement, unitary braid representation and Temperley-Lieb algebra
作品名稱(其他語言)
著者Ho, C.L.; Solomon, A.I.; Oh, C.H.
單位淡江大學物理學系
出版者Les Ulis: E D P Sciences
著錄名稱、卷期、頁數Europhysics Letters 92(3), 30002(5pages)
摘要Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate directly, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.
關鍵字
語言英文
ISSN0295-5075
期刊性質國外
收錄於SCI
產學合作
通訊作者
審稿制度
國別法國
公開徵稿
出版型式紙本;1286-4854;電子版
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!