Quantum entanglement, unitary braid representation and Temperley-Lieb algebra
學年 99
學期 1
出版(發表)日期 2010-11-01
作品名稱 Quantum entanglement, unitary braid representation and Temperley-Lieb algebra
著者 Ho, C.L.; Solomon, A.I.; Oh, C.H.
單位 淡江大學物理學系
出版者 Les Ulis: E D P Sciences
著錄名稱、卷期、頁數 Europhysics Letters 92(3), 30002(5pages)
摘要 Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate directly, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.
語言 en
ISSN 0295-5075
期刊性質 國外
收錄於 SCI
國別 FRA
出版型式 紙本 1286-4854 電子版

機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77256 )