| A group lasso approach for non-stationary spatial–temporal covariance estimation | |
|---|---|
| 學年 | 100 |
| 學期 | 2 |
| 出版(發表)日期 | 2012-02-01 |
| 作品名稱 | A group lasso approach for non-stationary spatial–temporal covariance estimation |
| 作品名稱(其他語言) | |
| 著者 | Hsu, Nan-Jung; Chang, Ya-Mei; Huang, Hsin-Cheng |
| 單位 | 淡江大學統計學系 |
| 出版者 | Chichester: John Wiley & Sons Ltd. |
| 著錄名稱、卷期、頁數 | Environmetrics 23(1), pp.12–23 |
| 摘要 | We develop a new approach for modeling non-stationary spatial–temporal processes on the basis of data sampled at fixed locations over time. The approach applies a basis function formulation and a constrained penalized least squares method recently proposed for estimating non-stationary spatial-only covariance functions. In this article, we further incorporate the temporal dependence into this framework and model the spatial–temporal process as the sum of a spatial–temporal stationary process and a linear combination of known basis functions with temporal dependent coefficients. A group lasso penalty is devised to select the basis functions and estimate the parameters simultaneously. In addition, a blockwise coordinate descent algorithm is applied for implementation. This algorithm computes the constrained penalized least squares solutions along a regularization path very rapidly. The resulting dynamic model has a state-space form, thereby the optimal spatial–temporal predictions can be computed efficiently using the Kalman filter. Moreover, the methodology is applied to a wind speed data set observed at the western Pacific Ocean for illustration. |
| 關鍵字 | coordinate descent; Frobenius loss; group lasso; Kalman filter; penalized least squares; spatial prediction |
| 語言 | en |
| ISSN | 1099-095X |
| 期刊性質 | 國外 |
| 收錄於 | SCI |
| 產學合作 | |
| 通訊作者 | Hsu, Nan-Jung |
| 審稿制度 | |
| 國別 | GBR |
| 公開徵稿 | |
| 出版型式 | 電子版 |
| 相關連結 |
機構典藏連結 ( http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77042 ) |
| SDGS | 氣候行動,尊嚴就業與經濟發展,產業創新與基礎設施 |