教師資料查詢 | 類別: 期刊論文 | 教師: 陳俊豪 CHUN-HAO CHEN (瀏覽個人網頁)

標題:A genetic-fuzzy mining approach for items with multiple minimum supports
學年97
學期2
出版(發表)日期2009/03/01
作品名稱A genetic-fuzzy mining approach for items with multiple minimum supports
作品名稱(其他語言)
著者Chen, Chun-hao; Hong, Tzung-pei; Tseng, Vincent S.; Lee, Chang-shing
單位淡江大學資訊工程學系
出版者Springer Berlin
著錄名稱、卷期、頁數Soft Computing 13(5), pp.521-533
摘要Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions under a single minimum support. In real applications, different items may have different criteria to judge their importance. In this paper, we thus propose an algorithm which combines clustering, fuzzy and genetic concepts for extracting reasonable multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It first uses the k-means clustering approach to gather similar items into groups. All items in the same cluster are considered to have similar characteristics and are assigned similar values for initializing a better population. Each chromosome is then evaluated by the criteria of requirement satisfaction and suitability of membership functions to estimate its fitness value. Experimental results also show the effectiveness and the efficiency of the proposed approach.
關鍵字Data mining; Genetic-fuzzy algorithm; k-means; Clustering; Multiple minimum supports; Requirement satisfaction
語言英文
ISSN1432-7643;1433-7479
期刊性質國外
收錄於SCI
產學合作
通訊作者
審稿制度
國別德國
公開徵稿
出版型式電子版;紙本
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!