標題:Adaptive Control for Mimo Uncertain Nonlinear Systems Using Recurrent Wavelet Neural Network |
---|
學年 | 100 |
---|
學期 | 2 |
---|
出版(發表)日期 | 2012/02/01 |
---|
作品名稱 | Adaptive Control for Mimo Uncertain Nonlinear Systems Using Recurrent Wavelet Neural Network |
---|
作品名稱(其他語言) | |
---|
著者 | Lin, Chih-Min; Ting, Ang-Bung; Hsu, Chun-Fei; Chung, Chao-Ming |
---|
單位 | 淡江大學電機工程學系 |
---|
出版者 | Singapore: World Scientific Publishing Co. Pte. Ltd. |
---|
著錄名稱、卷期、頁數 | International Journal of Neural Systems 22(1), pp.37-50 |
---|
摘要 | Recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good generalization capability and information storing ability. With these advantages, this paper proposes an RWNN-based adaptive control (RBAC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The RBAC system is composed of a neural controller and a bounding compensator. The neural controller uses an RWNN to online mimic an ideal controller, and the bounding compensator can provide smooth and chattering-free stability compensation. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. Finally, the proposed RBAC system is applied to the MIMO uncertain nonlinear systems such as a mass-spring-damper mechanical system and a two-link robotic manipulator system. Simulation results verify that the proposed RBAC system can achieve favorable tracking performance with desired robustness without any chattering phenomenon in the control effort. |
---|
關鍵字 | Wavelet neural network;adaptive control;nonlinear system;uniformly ultimately bounded |
---|
語言 | 英文 |
---|
ISSN | 1793-6462 |
---|
期刊性質 | 國外 |
---|
收錄於 | SCI; |
---|
產學合作 | |
---|
通訊作者 | Lin, Chih-Min; Hsu, Chun-Fei |
---|
審稿制度 | 是 |
---|
國別 | 新加坡 |
---|
公開徵稿 | |
---|
出版型式 | ,電子版,紙本 |
---|
相關連結 | |
---|
|
Google+ 推薦功能,讓全世界都能看到您的推薦!