標題:Indirect adaptive self-organizing RBF neural controller design with a dynamical training approach |
---|
學年 | 100 |
---|
學期 | 1 |
---|
出版(發表)日期 | 2012/01/01 |
---|
作品名稱 | Indirect adaptive self-organizing RBF neural controller design with a dynamical training approach |
---|
作品名稱(其他語言) | |
---|
著者 | Hsu, Chun-Fei; Chiu, Chien-Jung; Tsai, Jang-Zern |
---|
單位 | 淡江大學電機工程學系 |
---|
出版者 | Kidlington: Pergamon |
---|
著錄名稱、卷期、頁數 | Expert Systems with Applications 39(1), pp.564–573 |
---|
摘要 | This study proposes an indirect adaptive self-organizing RBF neural control (IASRNC) system which is composed of a feedback controller, a neural identifier and a smooth compensator. The neural identifier which contains a self-organizing RBF (SORBF) network with structure and parameter learning is designed to online estimate a system dynamics using the gradient descent method. The SORBF network can add new hidden neurons and prune insignificant hidden neurons online. The smooth compensator is designed to dispel the effect of minimum approximation error introduced by the neural identifier in the Lyapunov stability theorem. In general, how to determine the learning rate of parameter adaptation laws usually requires some trial-and-error tuning procedures. This paper proposes a dynamical learning rate approach based on a discrete-type Lyapunov function to speed up the convergence of tracking error. Finally, the proposed IASRNC system is applied to control two chaotic systems. Simulation results verify that the proposed IASRNC scheme can achieve a favorable tracking performance. |
---|
關鍵字 | RBF network;Adaptive control;Neural control;Self-organizing;Dynamical learning rate |
---|
語言 | 英文 |
---|
ISSN | 1873-6793 |
---|
期刊性質 | 國外 |
---|
收錄於 | SCI; |
---|
產學合作 | |
---|
通訊作者 | Hsu, Chun-Fei |
---|
審稿制度 | 是 |
---|
國別 | 英國 |
---|
公開徵稿 | |
---|
出版型式 | ,電子版,紙本 |
---|
相關連結 | |
---|
|
Google+ 推薦功能,讓全世界都能看到您的推薦!