教師資料查詢 | 類別: 期刊論文 | 教師: 鄧文舜 Deng Wen-shuenn (瀏覽個人網頁)

標題:A study of local linear ridge regression estimators
學年89
學期1
出版(發表)日期2001/01/01
作品名稱A study of local linear ridge regression estimators
作品名稱(其他語言)
著者鄧文舜; Deng, Wen-shuenn; Chu, C.K.; Cheng, M.Y.
單位淡江大學統計學系
出版者
著錄名稱、卷期、頁數Journal of statistical planning ; inference 93(1-2), pp.225-238
摘要In the case of the random design nonparametric regression, to correct for the unbounded finite-sample variance of the local linear estimator (LLE), Seifert and Gasser (J. Amer. Statist. Assoc. 91 (1996) 267–275) apply the idea of ridge regression to the LLE, and propose the local linear ridge regression estimator (LLRRE). However, the finite sample and the asymptotic properties of the LLRRE are not discussed there. In this paper, upper bounds of the finite-sample variance and bias of the LLRRE are obtained. It is shown that if the ridge regression parameters are not properly selected, then the resulting LLRRE has some drawbacks. For example, it may have a nonzero constant asymptotic bias, may suffer from boundary effects, or may be unable to share the nice asymptotic bias quality of the LLE. On the other hand, if the ridge regression parameters are properly selected, then the resulting LLRRE does not suffer from the above problems, and has the same asymptotic mean-square error as the LLE. For this purpose, the ridge regression parameters are allowed to depend on the sample size, and converge to 0 as the sample size increases. In practice, to select both the bandwidth and the ridge regression parameters, the idea of cross-validation is applied. Simulation studies demonstrate that the LLRRE using the cross-validated bandwidth and ridge regression parameters could have smaller sample mean integrated square error than the LLE using the cross-validated bandwidth, in reasonable sample sizes.
關鍵字Asymptotic behavior; Boundary effect; Finite-sample behavior; Local linear ridge regression estimator; Local linear estimator; nonparametric regression; Ridge regression
語言英文
ISSN
期刊性質國內
收錄於
產學合作
通訊作者
審稿制度
國別中華民國
公開徵稿
出版型式,電子版
相關連結
SDGs
Google+ 推薦功能,讓全世界都能看到您的推薦!