教師資料查詢 | 類別: 期刊論文 | 教師: 胡守仁 HU SHOU-JEN (瀏覽個人網頁)

標題:Noether’s Problem and the Unramified Brauer Group for Groups of Order 64
學年98
學期1
出版(發表)日期2010/01/01
作品名稱Noether’s Problem and the Unramified Brauer Group for Groups of Order 64
作品名稱(其他語言)
著者Chu, Huah; Hu, Shou-Jen; Kang, Ming-Chang; Kunyavskii, Boris E.
單位淡江大學數學學系
出版者Oxford: Oxford University Press
著錄名稱、卷期、頁數International Mathematics Research Notices 2010(12), pp.2329-2366
摘要Let K be any field and G be a finite group acting on the rational function field K(xg : g ∈ G) by h ⋅ xg = xhg for any g, h ∈ G. Define K(G) = K(xg : g ∈ G)G. Noether’s problem asks whether K(G) is rational (purely transcendental) over K. For any prime number p, Bogomolov shows that there is some group G of order p6 with B0(G) ≠ 0, where B0(G) is the unramified Brauer group of ℂ(G), which is the subgroup of H2(G, ℚ/ℤ) consisting of cohomology classes whose restrictions to all bicyclic subgroups are zero. As a consequence, ℂ(G) is not rational over ℂ. In this paper, we will classify all the groups G of order 64 with B0(G) ≠ 0; for groups G satisfying B0(G) = 0, we will show that ℂ(G) is rational except possibly for five cases.
關鍵字
語言英文
ISSN1073-7928; 1687-0247
期刊性質國外
收錄於SCI
產學合作
通訊作者Kang, Ming-Chang
審稿制度
國別英國
公開徵稿
出版型式紙本
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!