教師資料查詢 | 類別: 期刊論文 | 教師: 譚必信 Tam Bit-shun (瀏覽個人網頁)

標題:Maximal exponents of polyhedral cones (II)
學年98
學期2
出版(發表)日期2010/06/01
作品名稱Maximal exponents of polyhedral cones (II)
作品名稱(其他語言)
著者Raphael Loewy; Tam, Bit-Shun
單位淡江大學數學學系
出版者Philadelphia: Elsevier Inc.
著錄名稱、卷期、頁數Linear Algebra and its Applications 432(11), pp.2861-2878
摘要Let K be a proper (i.e., closed, pointed, full convex) cone in Rn. An n×n matrix A is said to be K-primitive if there exists a positive integer k such that ; the least such k is referred to as the exponent of A and is denoted by γ(A). For a polyhedral cone K, the maximum value of γ(A), taken over all K-primitive matrices A, is called the exponent of K and is denoted by γ(K). It is proved that the maximum value of γ(K) as K runs through all n-dimensional minimal cones (i.e., cones having n+1 extreme rays) is n2-n+1 if n is odd, and is n2-n if n is even, the maximum value of the exponent being attained by a minimal cone with a balanced relation for its extreme vectors. The K-primitive matrices A such that γ(A) attain the maximum value are identified up to cone-equivalence modulo positive scalar multiplication.
關鍵字Cone-preserving map; K-primitive matrix; Exponents; Polyhedral cone; Exp-maximal cone; Exp-maximal K-primitive matrix; Cone-equivalence; Minimal cone
語言英文
ISSN0024-3795
期刊性質國外
收錄於SCI;EI
產學合作
通訊作者Tam, Bit-Shun
審稿制度
國別美國
公開徵稿
出版型式紙本
相關連結
Google+ 推薦功能,讓全世界都能看到您的推薦!