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Introduction

 With the recent advances in technology, we are 
faced with the need to process increasingly larger 
amounts of data in faster times.

 There are practical situations in which the input is 
so large, that even taking a linear time in its size to 
provide an answer is too much.

 Making a decision after reading only a small 
portion of the input, that is, in sublinear time, is 
thus considered to be an very important issue.



9Dept. CSIE, TKU, Taiwan

Introduction (cont’d)

 Sublinear time algorithms have received a lot of 
attention recently.

 Recent results have shown that there are optimi-
zation problems whose value can be approximated 
in sublinear time.
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Introduction (cont’d)

 However, most algorithms which run in sublinear 
time must necessarily use randomization and must 
give an approximate answer.

 Surprisingly though, there are nontrivial problems 
for which deterministic exact algorithms exist!

 Let us see the following two examples.
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Example 1: Tournament

 A tournament is a digraph such that for each pair of 
vertices u and v, exactly one of (u, v) and (v, u) is 
an edge.

 We can interpret the vertices as players such that 
each pair of players play a match, and an edge 
from one to another indicates that one player beats 
another, hence the name tournament.
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Tournament (cont’d)

 Assume that we have a tournament G on n vertices 
represented in adjacency matrix form MG.

 Thus, the size of G is .

a tournament G

v1 v2

v3v4

v1

v2

v3

v4

v1 v2 v3 v4

MG =
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Tournament (cont’d)

 Input:
 a tournament G on n vertices represented in 

adjacency matrix form MG .

 Output:
 the source of G if it exists, otherwise output “No source 

exists”. (source: the vertex of out-degree n1)

 There exists a deterministic algorithm that finds 
the source of G (a player who beats all others) if it 
exists in O(n) time.
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Tournament (cont’d)
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Example 2: Diameter

 Assume that we have n points in a metric space.

 The input is an n  n distance matrix D such that 
D(i, j) is the distance between i and j.

 We seek a sublinear time algorithm that outputs      
, i.e., the diameter.maxi;j D(i; j)
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Diameter (cont’d)

 Input:
 an n  n distance matrix D such that D(i, j) is the 

distance between i and j.

 Output:
 diameter of these n points (i.e.,                         )

 Consider the following simple algorithm.

maxi;j D(i; j)
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Diameter (cont’d)
Algorithm-Diameter:

F Pick a point u arbitrary and output z := maxv D(u; v).

End of the Algorithm

 Clearly this algorithm runs in O(n) time. Moreover, 
we argue that z, the value returned by this naïve 
looking algorithm, is a good approximation for the 
diameter d of the input.
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Diameter (cont’d)

 Claim: d/2  z  d.

 Proof:
 Let a and b be two points such that D(a,b) = d and 

assume that z = D(u,v)

 Since D is a metric space, we have 

d = D(a; b) · D(a; u) +D(u; b) · D(u; v) +D(u; v) = 2z:

¥



 To study approximation algorithms, we need to 
define notions of how good an approximation is.

19
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Definitions
Let ¼(x) be the optimal solution of an input x. For ¯ > 1,
we say that A is a ¯-multiplicative approximation algorithm
if for all x,

¼(x)

¯
· A(x) · ¯¼(x):

We say that A is an ®-additive approximation algorithm if
for all x,

¼(x)¡ ® · A(x) · ¼(x) + ®:
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How to approximate a decision 
problem?

 In addition, property testing, an alternative notion 
of approximation for decision problems, has been 
applied to give sublinear time algorithms for a 
wide variety of problems.

 “Still, the study of sublinear time algorithms is 
very new, and much remains to be understood 
about their scope.” - Ronitt Rubinfeld
 ACM SIGACT News, Vol. 34, No. 4, 2003.
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Property testing

 The notion of property testing was first formulated 
by Rubinfeld and Sudan.

Ronitt Rubinfeld and Madhu Sudan: Robust charaterization of 
polynomials with applications to program testing, SIAM Journal 
on Computing, 1996, Vol. 25, pp. 252-271.
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Property testing (cont’d)

 Due to these two pioneers, plenty results have 
come out recently.
 See the “Further readings” for reference. 

 Many outstanding scholars have devoted to this 
topic of research, such as:
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Manuel Blum Madhu Sudan Ronitt Rubinfeld Luca Trevisan Bernard Chazelle

Noga Alon Dana Ron Rajeev Motwani Oded Goldreich Sanjeev Arora

Ravi Kumar

Carsten Lund Tugkan Batu Shafi Goldwasser Michael Luby

Mario Szegedy

Eldar Fischer

Lance Fortnow Sampath Kannan Funda Ergűn
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Especially, 

 Property testing emerges naturally in the context of 
program checking and probabilistic checkable 
proofs (PCP).

Mario SzegedySanjeev Arora Carsten Lund Rajeev Motwani Madhu Sudan

PCP theorem: NP = PCP(O(log n), O(1))

- JACM, Vol. 45, 1998.
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Roughly speaking, …

 A property tester is an algorithm which 
 accepts with high probability if the input has a certain 

property, and 

 rejects with high probability if the input is “far” from 
the property.
 That is, the input cannot be modified slightly to make it 

possess the property.
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Property testing (cont’d)

 In order to define a property tester, it is important 
to define a notion of distance from having a 
property.

 Define a language P to be a class of inputs that 
have a certain property.
 For example, connected graphs, monotone increasing

integers, …
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Property testing (cont’d)

 Let Δ(x, y) be the distance function between input x
and y, with Δ(x, y) [0, 1] and define

d(x; P ) = miny2P ¢(x; y)
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Property testing (cont’d)

 For example, the Hamming distance/ #digits of two 
0-1 strings with equal length can be a .

 Let P be a set of 0-1 strings which has fewer 0’s 
than 1’s, we can easily have 

Δ(010012,011102) =  3/5.

d(010012,P) =  1/5.
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Property testing (cont’d)

 So let us consider the formal definition of 
a property tester.
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Property testing (cont’d)





The ‘2/3’ can be amplified
 Let’s say the tester A can achieve:

 If , then Pr[A returns “PASS”] = 1

 If , then Pr[A returns “FAIL”] = p
ଶ

ଷ
.

 We can run A for m times and output the majority answer.

 m = 3, the success probability: ଷ
ଶ

ଶ

ଷ

ଵ ଵ

ଷ

ଶ
ଷ
ଷ

ଵ

ଷ

ଷ
.

 m = 5, the success probability: ହ
ଷ

ଶ

ଷ

ଶ ଵ

ଷ

ଷ
ହ
ସ

ଶ

ଷ

ଵ ଵ

ଷ

ସ
ହ
ହ

ଵ

ଷ

ହ
.

 m = 11, the success probability: ≈ 0.88.

 m = 21, the success probability: ≈ 0.94.

 m = 101, the success probability: ≈ 0.9997.
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A simple example

 Consider the following example to figure out 
the concept of property testing.

 Suppose we have a sequence of n numbers, 
x1, …, xn, we would like to determine if the 
sequence is monotonically increasing. 
 Input: x1, …, xn

 Output: Accepts or Rejects.
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Testing monotonicity of  a list

 Any deterministic decision algorithm runs in (n) 
time to read the input and make a decision.

 On the other hand, a property testing algorithm 
exists such that it
 accepts, if the sequence is monotonically increasing 

 rejects with probability greater than 2/3, if more than n
of the xi need to be removed so that the resulting 
sequence becomes monotonically increasing.
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Testing monotonicity of  a list (cont’d)

 WLOG, we can assume that all xi’s are distinct.
 Since we can interpret xi as (xi, i), which breaks ties 

without changing order.

 Consider the following simple approach which can 
not be ensured to run in sublinear time.
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Testing monotonicity of  a list (cont’d)

 Consider the following sequence which is very far 
from monotonically increasing:

4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9

PASS

Algorithm 1

F Select i randomly and test whether xi < xi+1.
Then return \Pass" if xi < xi+1, and return \Fail"
otherwise.
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Testing monotonicity of  a list (cont’d)

 Generally, such sequence x1, x2,…, xn can be 
written as the following form:

 For example, when m = 4, k = 3:

m, 2m, … , km,

m1, 2m1, … , km1, … , 

1, m+1, 2m+1, … , (k1)m+1.         (thus n = mk)

where m, k are two integers greater than 1. 

4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9
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Testing monotonicity of  a list (cont’d)

 The distance of such sequence from monotonically 
increasing is at least ½.
 WHY?

 For example,

2, 4, 1, 3 → 2, 4 or 2, 3 or 1, 3 

for monotonically increasing
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Testing monotonicity of  a list (cont’d)

 See the following illustration: (m = 4, k = 3)

4

8

12

3

7

11

2

6

10

: increasing

1

5

9
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Testing monotonicity of  a list (cont’d)

4

8

12

3

7

11

2

6

10

1

5

9

 See the following illustration: (m = 4, k = 3)
Let it be an integer in the longest 
increasing subsequence

x

:   > x

:   < x
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Testing monotonicity of  a list (cont’d)

 We can easily prove that the length of a longest 
monotonically increasing subsequence in such a 
sequence must be at most k,
 Exercise. (Hint: Consult the previous illustration.)

 So the distance of such sequence from 
monotonically increasing is at least n  k = (m1)k, 
which is at least ½ of the length of the sequence.
 For example, 2, 4, 1, 3 → 2, 4 or 2, 3 or 1, 3
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Testing monotonicity of  a list (cont’d)

 Algorithm 1 does not detect that the sequence is 
not monotonically increasing as long as it does 
not query a pair of locations of a yellow integer 
and its next integer respectively. 

 Thus Algorithm 1 will need (k) queries, that is, 
repeatedly runs (k) times.
 WHY?

m, 2m,…, km, m1, 2m1,…, km1, … , 1, m+1, 2m+1,…, (k1)m+1
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Testing monotonicity of  a list (cont’d)

m, 2m,…, km, m1, 2m1,…, km1, … , 1, m+1, 2m+1,…, (k1)m+1

 The probability that Algorithm 1 doesn’t query any 
yellow integer is larger than 1  1/k for each run. 

 The probability that Algorithm 1 queries a yellow 
integer at least once during ck runs is less than
1  (11/k)ck.
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Testing monotonicity of  a list (cont’d)

 1  (11/k)ck 1 – 1/ec  > 2/3 when k is large and 
c > 1. 
 That is, if we don’t run Algorithm 1 for more than (k) 

times, Algorithm 1 will not query any yellow integer 
with high probability (when k is large and c > 1.)

 However, we cannot ensure the probability that 
Algorithm 1 query a yellow integer at least once 
during ck runs is at least 2/3.
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Testing monotonicity of  a list (cont’d)

 Thus, the time complexity of this algorithm 
cannot be ensured to be sublinear.

 Try another one!
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Testing monotonicity of  a list (cont’d)

 Consider another algorithm, which is a little 
sophisticated.

Algorithm 2

F Samples the sequence at random points
and checks if these random points form a
monotonically increasing sequence.

F Return \Pass" if they do, and return \Fail"
otherwise.
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Testing monotonicity of  a list (cont’d)

 However, consider the following sequence, which 
is again very far from monotonically increasing.

 Again, the distance of this sequence from 
monotonically increasing is at least ½.

 The algorithm detects that this sequence is not 
monotonically increasing only if two of its query 
points fall within [km, (k1)m+1] for some k.

m, m1,…,1, 2m, 2m1,…, m + 1, 3m, …, 2m + 1, …



48Dept. CSIE, TKU, Taiwan

Testing monotonicity of  a list (cont’d)

 However, by the Birthday Paradox, this is unlikely
if m is a constant and the number of samples is 
o((n/m)½) = o(n½).

 With high probability, the values of the query 
points will form a monotonically increasing sub-
sequence.

 Thus Algorithm 2 does not work well.

m, m1,…,1, 2m, 2m1,…, m + 1, 3m, …, 2m + 1, …
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 Can we do better?
 YES!

F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld and M. 
Viswanathan proposed a O((1/) log n) property tester.

- JCSS, Vol. 60, 2000
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Testing monotonicity of  a list (cont’d)

 Consider the following algorithm. [EKKRV00]
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1 2 3 4 5 6 7

21 9 1 3 5 8 17

index

value

For example,

Search for value 1.

Output: Fail!

Begin binary search
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1 2 3 4 5 6 7

21 9 1 3 5 8 17

index

value

Another example,

Search for value 8.

Output: Pass!

Begin binary search
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Testing monotonicity of  a list (cont’d)

 Algorithm 3 runs in time O((1/) log n) since each 
binary search takes O(log n) time.

 If the sequence {xi} is monotonically increasing, 
then clearly the algorithm accepts.

 We need to show that if at least n of the sequence 
need to be removed for it to be monotonically 
increasing, then the algorithm rejects (resp. accepts) 
with probability at least 2/3 (resp., less than 1/3).
 Suppose not, that Algorithm 3 accepts with probability 

at least 1/3. 
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Testing monotonicity of  a list (cont’d)

 We call index i is 
 “good” if the binary search for xi is successful, 

 “bad” otherwise.



55Dept. CSIE, TKU, Taiwan

Testing monotonicity of  a list (cont’d)

 For example,

1 2 3 4 5 6 7 8 9

6 4 2 5 8 0 12 14 10

index

value

4 12

8
: good ones

: bad ones
14

5 10

6 2 0
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Testing monotonicity of  a list (cont’d)

 We claim that less than n of the indices are bad.
 Otherwise, each time through the loop, the algorithm 

finds a bad index with probability at least . 
 Then Algorithm 3 accepts with probability at most       

(1  )c/ < ec < 1/3 for some constant c.

 A contradiction then occurs.

 Now, the remaining part is to prove that the good
points indeed form a monotonically increasing 
subsequence.
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Testing monotonicity of  a list (cont’d)

 Consider any two good indices i, j , where i < j.

 Consider the first point in the binary search path 
where xi and xj diverge and assume that point has 
value u.

 Since i and j are good and i < j, we can conclude 
that xi  u  xj. This concludes the proof.

¥
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 Now, let us consider another problem: 

Testing connectivity of a graph.
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Connected and Disconnected

connected

disconnected
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Degree bound

 We say a graph G(V, E) has a degree bound d if for 
each vertex v  V, 

where deg(v) is the number of vertices adjacent to 
v in G.

deg(v) · d
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Graph representations

 Adjacency matrix
 For dense graphs

 Adjacency list
 For sparse graphs

A B

CD

A

B

C

D

A B

CD

A B C D
A
B
C
D

C D

D

A

A B
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Testing connectivity of  a graph

 We will adopt the adjacency list model with a 
given degree bound d to proceed with our 
discussion.
 The graph possesses O(dn) edges.
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Testing connectivity of  a graph (cont’d)
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Testing connectivity of  a graph (cont’d)

 Let , we define the distance of G from 
connected to be

where            is the minimum number of 
modifications of edges needed for G to be 
connected such that the degree bound d is still 
maintained.

½d(G)
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For example, (d = 2)

v1 v2

v4v3

G
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Another example, (d = 2)

v5
G

v1 v2

v3

v4

v6

WHY?
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Idea

 If a graph is far from connected, there must be 
many components, 
 That in turn implies that there are many small 

components.

 Consider the following algorithm proposed by 
O. Goldreich and D. Ron.

- Algorithmica, Vol. 32, 2002.



68Dept. CSIE, TKU, Taiwan

Testing connectivity of  a graph (cont’d)
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An illustration

Pick 2 nodes of the graph, and traverse 
at most 4 nodes during each BFS.

STOP

The component 
is exhausted!

Halt and output:  “Fail”
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Testing connectivity of  a graph (cont’d)

 The running time of Algorithm GR is

which is sublinear.

 Why does this algorithm work? 
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Testing connectivity of  a graph (cont’d)

 For               if GP, it is obvious that the 
algorithm must output “Pass”.
 Maybe you don’t think that this is trivial. You can prove 

this claim for an easy exercise.

 So, what if GP? 
 We have to prove that if G is far from P, (i.e., G is far 

from connected with degree bound d ) Algorithm GR 
will output “Fail” with probability at least 2/3.
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Testing connectivity of  a graph (cont’d)

 Consider the following observation first.

 Observation:

 Proof:
 If G has less than dn /2 connected components, we can 

add less than dn /2 edges to make G connected.

 G is not -far from connected. (Because  dn/dn =  )
¥
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Testing connectivity of  a graph (cont’d)

 Lemma 1:

 Proof: Exercise!
 Hint:  Consider the previous observation and the second 

example for illustrating                    .dist(G;P )

A class of connected graphs with 
bounded degree d

If G 2 Gd
n is ²-far from P , then G has at least ²dn=4

connected components.
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Testing connectivity of  a graph (cont’d)

 Corollary 1:

 Proof:
 Let n< be the number of components of size less than 

 Let n> be the number of components of size at least

 We call them small components for simplicity.
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Testing connectivity of  a graph (cont’d)

 Assume that G is -far from P. Then from 
Lemma 1 we have that G has at least dn/4 
connected components.

 Since n< + n> is the total number of connected 
components in G, we have n< +n>  dn/4.

 Since n> 8/d  n, we have n>  dn/8.

 Therefore, n<  dn/4  dn/8 = dn/8, the 
corollary immediately follows. ¥
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Testing connectivity of  a graph (cont’d)

 Theorem 1:

 Proof of Theorem 1 is as follows.
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Testing connectivity of  a graph (cont’d)

 If G is connected, Algorithm GR must output 
“Pass”.
 Trivial.

 Consider the case that G is -far from P.
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Testing connectivity of  a graph (cont’d)

 By Corollary 1, 

Each component is of size at
least one and they are dis-
joint.

From Corollary 1.
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Testing connectivity of  a graph (cont’d)

 Since m is chosen to be c/d for some constant c, 
we have

Therefore, the proof is done. ¥

These inequalities holds as long
as we pick c large enough (c

0
is a

constant that depends on c).



I think I should end 
this talk now.
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Textbook
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Further 
readings

 A Brief Introduction to Property 
Testing by Oded Goldreich:
 https://www.wisdom.weizmann.ac

.il/~oded/COL/pt-intro.pdf

 Sublinear Time Algorithms by 
Ronitt Rubinfeld:
 http://theory.lcs.mit.edu/%7Eronitt

/sublinear.html
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Thank you.


