
Invited Talk@NTUB

Introduction to Property Testing

Chuang-Chieh Lin (林莊傑)

Dept. CSIE, Tamkang University

Date: 2 June 2022

2Dept. CSIE, TKU, Taiwan

Outline

 Introduction
 Sublinear-time algorithms

 Notions of approximation

 Definition of a property tester

 Two simple examples
 Testing monotonicity of a list

 Testing connectivity of a graph

 Further readings

About Me
(Education)

Dept. CSIE, TKU, Taiwan 3

• National Cheng Kung University, 2002.

BS.: Mathematics,

• National Chi Nan University, 2004.
• Advisor: R.C.T. Lee

MS.: CSIE,

• National Chung Cheng University, 2011.
• Advisors: Maw-Shang Chang & Peter

Rossmanith

Ph.D.: CSIE,

About Me (Postdoctoral)

2011–2014

@Genomics Research Center,
Academia Sinica (alternative
military service).
•Bioinformatics, comparative genomics
•Project investigator: Trees-Juen Chuang

2014–2018

@Institute of Information
Science, Academia Sinica
• Machine learning, game theory
• Project investigator: Chi-Jen Lu

About Me (Hedge Fund)

5

2018–2019

Quantitative Analyst (intern) of
Point72/Cubist Systematic Strategies
• Hedge Fund; Fintech; Data Science
• US hedge fund (Taipei Branch in 2019)
• CEO & Chairman: Steven A. Cohen

2020−present

Quantitative Analyst of Seth
Technologies Inc.
• High-Frequency Trading; Hedge

Fund; Fintech; Data Science
• Taiwan based.

Dept. CSIE, TKU, Taiwan

About Me
(Teaching) –

Since 2021
Feburary

What is and Why Property
Testing?

7Dept. CSIE, TKU, Taiwan

8Dept. CSIE, TKU, Taiwan

Introduction

 With the recent advances in technology, we are
faced with the need to process increasingly larger
amounts of data in faster times.

 There are practical situations in which the input is
so large, that even taking a linear time in its size to
provide an answer is too much.

 Making a decision after reading only a small
portion of the input, that is, in sublinear time, is
thus considered to be an very important issue.

9Dept. CSIE, TKU, Taiwan

Introduction (cont’d)

 Sublinear time algorithms have received a lot of
attention recently.

 Recent results have shown that there are optimi-
zation problems whose value can be approximated
in sublinear time.

10Dept. CSIE, TKU, Taiwan

Introduction (cont’d)

 However, most algorithms which run in sublinear
time must necessarily use randomization and must
give an approximate answer.

 Surprisingly though, there are nontrivial problems
for which deterministic exact algorithms exist!

 Let us see the following two examples.

11Dept. CSIE, TKU, Taiwan

Example 1: Tournament

 A tournament is a digraph such that for each pair of
vertices u and v, exactly one of (u, v) and (v, u) is
an edge.

 We can interpret the vertices as players such that
each pair of players play a match, and an edge
from one to another indicates that one player beats
another, hence the name tournament.

12Dept. CSIE, TKU, Taiwan

Tournament (cont’d)

 Assume that we have a tournament G on n vertices
represented in adjacency matrix form MG.

 Thus, the size of G is .

a tournament G

v1 v2

v3v4

v1

v2

v3

v4

v1 v2 v3 v4

MG =

13Dept. CSIE, TKU, Taiwan

Tournament (cont’d)

 Input:
 a tournament G on n vertices represented in

adjacency matrix form MG .

 Output:
 the source of G if it exists, otherwise output “No source

exists”. (source: the vertex of out-degree n1)

 There exists a deterministic algorithm that finds
the source of G (a player who beats all others) if it
exists in O(n) time.

14Dept. CSIE, TKU, Taiwan

Tournament (cont’d)

15Dept. CSIE, TKU, Taiwan

Example 2: Diameter

 Assume that we have n points in a metric space.

 The input is an n n distance matrix D such that
D(i, j) is the distance between i and j.

 We seek a sublinear time algorithm that outputs
, i.e., the diameter.maxi;j D(i; j)

16Dept. CSIE, TKU, Taiwan

Diameter (cont’d)

 Input:
 an n n distance matrix D such that D(i, j) is the

distance between i and j.

 Output:
 diameter of these n points (i.e.,)

 Consider the following simple algorithm.

maxi;j D(i; j)

17Dept. CSIE, TKU, Taiwan

Diameter (cont’d)
Algorithm-Diameter:

F Pick a point u arbitrary and output z := maxv D(u; v).

End of the Algorithm

 Clearly this algorithm runs in O(n) time. Moreover,
we argue that z, the value returned by this naïve
looking algorithm, is a good approximation for the
diameter d of the input.

18Dept. CSIE, TKU, Taiwan

Diameter (cont’d)

 Claim: d/2 z d.

 Proof:
 Let a and b be two points such that D(a,b) = d and

assume that z = D(u,v)

 Since D is a metric space, we have

d = D(a; b) · D(a; u) +D(u; b) · D(u; v) +D(u; v) = 2z:

¥

 To study approximation algorithms, we need to
define notions of how good an approximation is.

19

20Dept. CSIE, TKU, Taiwan

Definitions
Let ¼(x) be the optimal solution of an input x. For ¯ > 1,
we say that A is a ¯-multiplicative approximation algorithm
if for all x,

¼(x)

¯
· A(x) · ¯¼(x):

We say that A is an ®-additive approximation algorithm if
for all x,

¼(x)¡ ® · A(x) · ¼(x) + ®:

21Dept. CSIE, TKU, Taiwan

How to approximate a decision
problem?

 In addition, property testing, an alternative notion
of approximation for decision problems, has been
applied to give sublinear time algorithms for a
wide variety of problems.

 “Still, the study of sublinear time algorithms is
very new, and much remains to be understood
about their scope.” - Ronitt Rubinfeld
 ACM SIGACT News, Vol. 34, No. 4, 2003.

22Dept. CSIE, TKU, Taiwan

Property testing

 The notion of property testing was first formulated
by Rubinfeld and Sudan.

Ronitt Rubinfeld and Madhu Sudan: Robust charaterization of
polynomials with applications to program testing, SIAM Journal
on Computing, 1996, Vol. 25, pp. 252-271.

23Dept. CSIE, TKU, Taiwan

Property testing (cont’d)

 Due to these two pioneers, plenty results have
come out recently.
 See the “Further readings” for reference.

 Many outstanding scholars have devoted to this
topic of research, such as:

24

Manuel Blum Madhu Sudan Ronitt Rubinfeld Luca Trevisan Bernard Chazelle

Noga Alon Dana Ron Rajeev Motwani Oded Goldreich Sanjeev Arora

Ravi Kumar

Carsten Lund Tugkan Batu Shafi Goldwasser Michael Luby

Mario Szegedy

Eldar Fischer

Lance Fortnow Sampath Kannan Funda Ergűn

25Dept. CSIE, TKU, Taiwan

Especially,

 Property testing emerges naturally in the context of
program checking and probabilistic checkable
proofs (PCP).

Mario SzegedySanjeev Arora Carsten Lund Rajeev Motwani Madhu Sudan

PCP theorem: NP = PCP(O(log n), O(1))

- JACM, Vol. 45, 1998.

26Dept. CSIE, TKU, Taiwan

Roughly speaking, …

 A property tester is an algorithm which
 accepts with high probability if the input has a certain

property, and

 rejects with high probability if the input is “far” from
the property.
 That is, the input cannot be modified slightly to make it

possess the property.

27Dept. CSIE, TKU, Taiwan

Property testing (cont’d)

 In order to define a property tester, it is important
to define a notion of distance from having a
property.

 Define a language P to be a class of inputs that
have a certain property.
 For example, connected graphs, monotone increasing

integers, …

28Dept. CSIE, TKU, Taiwan

Property testing (cont’d)

 Let Δ(x, y) be the distance function between input x
and y, with Δ(x, y) [0, 1] and define

d(x; P) = miny2P ¢(x; y)

29Dept. CSIE, TKU, Taiwan

Property testing (cont’d)

 For example, the Hamming distance/ #digits of two
0-1 strings with equal length can be a .

 Let P be a set of 0-1 strings which has fewer 0’s
than 1’s, we can easily have

Δ(010012,011102) = 3/5.

d(010012,P) = 1/5.

30Dept. CSIE, TKU, Taiwan

Property testing (cont’d)

 So let us consider the formal definition of
a property tester.

31Dept. CSIE, TKU, Taiwan

Property testing (cont’d)

The ‘2/3’ can be amplified
 Let’s say the tester A can achieve:

 If , then Pr[A returns “PASS”] = 1

 If , then Pr[A returns “FAIL”] = p .

 We can run A for m times and output the majority answer.

 m = 3, the success probability: .

 m = 5, the success probability: .

 m = 11, the success probability: ≈ 0.88.

 m = 21, the success probability: ≈ 0.94.

 m = 101, the success probability: ≈ 0.9997.

32Dept. CSIE, TKU, Taiwan

33Dept. CSIE, TKU, Taiwan

A simple example

 Consider the following example to figure out
the concept of property testing.

 Suppose we have a sequence of n numbers,
x1, …, xn, we would like to determine if the
sequence is monotonically increasing.
 Input: x1, …, xn

 Output: Accepts or Rejects.

34Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list

 Any deterministic decision algorithm runs in (n)
time to read the input and make a decision.

 On the other hand, a property testing algorithm
exists such that it
 accepts, if the sequence is monotonically increasing

 rejects with probability greater than 2/3, if more than n
of the xi need to be removed so that the resulting
sequence becomes monotonically increasing.

35Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 WLOG, we can assume that all xi’s are distinct.
 Since we can interpret xi as (xi, i), which breaks ties

without changing order.

 Consider the following simple approach which can
not be ensured to run in sublinear time.

36Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 Consider the following sequence which is very far
from monotonically increasing:

4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9

PASS

Algorithm 1

F Select i randomly and test whether xi < xi+1.
Then return \Pass" if xi < xi+1, and return \Fail"
otherwise.

37Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 Generally, such sequence x1, x2,…, xn can be
written as the following form:

 For example, when m = 4, k = 3:

m, 2m, … , km,

m1, 2m1, … , km1, … ,

1, m+1, 2m+1, … , (k1)m+1. (thus n = mk)

where m, k are two integers greater than 1.

4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9

38Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 The distance of such sequence from monotonically
increasing is at least ½.
 WHY?

 For example,

2, 4, 1, 3 → 2, 4 or 2, 3 or 1, 3

for monotonically increasing

39Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 See the following illustration: (m = 4, k = 3)

4

8

12

3

7

11

2

6

10

: increasing

1

5

9

40Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

4

8

12

3

7

11

2

6

10

1

5

9

 See the following illustration: (m = 4, k = 3)
Let it be an integer in the longest
increasing subsequence

x

: > x

: < x

41Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 We can easily prove that the length of a longest
monotonically increasing subsequence in such a
sequence must be at most k,
 Exercise. (Hint: Consult the previous illustration.)

 So the distance of such sequence from
monotonically increasing is at least n k = (m1)k,
which is at least ½ of the length of the sequence.
 For example, 2, 4, 1, 3 → 2, 4 or 2, 3 or 1, 3

42Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 Algorithm 1 does not detect that the sequence is
not monotonically increasing as long as it does
not query a pair of locations of a yellow integer
and its next integer respectively.

 Thus Algorithm 1 will need (k) queries, that is,
repeatedly runs (k) times.
 WHY?

m, 2m,…, km, m1, 2m1,…, km1, … , 1, m+1, 2m+1,…, (k1)m+1

43Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

m, 2m,…, km, m1, 2m1,…, km1, … , 1, m+1, 2m+1,…, (k1)m+1

 The probability that Algorithm 1 doesn’t query any
yellow integer is larger than 1 1/k for each run.

 The probability that Algorithm 1 queries a yellow
integer at least once during ck runs is less than
1 (11/k)ck.

44Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 1 (11/k)ck 1 – 1/ec > 2/3 when k is large and
c > 1.
 That is, if we don’t run Algorithm 1 for more than (k)

times, Algorithm 1 will not query any yellow integer
with high probability (when k is large and c > 1.)

 However, we cannot ensure the probability that
Algorithm 1 query a yellow integer at least once
during ck runs is at least 2/3.

45Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 Thus, the time complexity of this algorithm
cannot be ensured to be sublinear.

 Try another one!

46Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 Consider another algorithm, which is a little
sophisticated.

Algorithm 2

F Samples the sequence at random points
and checks if these random points form a
monotonically increasing sequence.

F Return \Pass" if they do, and return \Fail"
otherwise.

47Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 However, consider the following sequence, which
is again very far from monotonically increasing.

 Again, the distance of this sequence from
monotonically increasing is at least ½.

 The algorithm detects that this sequence is not
monotonically increasing only if two of its query
points fall within [km, (k1)m+1] for some k.

m, m1,…,1, 2m, 2m1,…, m + 1, 3m, …, 2m + 1, …

48Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 However, by the Birthday Paradox, this is unlikely
if m is a constant and the number of samples is
o((n/m)½) = o(n½).

 With high probability, the values of the query
points will form a monotonically increasing sub-
sequence.

 Thus Algorithm 2 does not work well.

m, m1,…,1, 2m, 2m1,…, m + 1, 3m, …, 2m + 1, …

49Dept. CSIE, TKU, Taiwan

 Can we do better?
 YES!

F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld and M.
Viswanathan proposed a O((1/) log n) property tester.

- JCSS, Vol. 60, 2000

50Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 Consider the following algorithm. [EKKRV00]

51Dept. CSIE, TKU, Taiwan

1 2 3 4 5 6 7

21 9 1 3 5 8 17

index

value

For example,

Search for value 1.

Output: Fail!

Begin binary search

52Dept. CSIE, TKU, Taiwan

1 2 3 4 5 6 7

21 9 1 3 5 8 17

index

value

Another example,

Search for value 8.

Output: Pass!

Begin binary search

53Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 Algorithm 3 runs in time O((1/) log n) since each
binary search takes O(log n) time.

 If the sequence {xi} is monotonically increasing,
then clearly the algorithm accepts.

 We need to show that if at least n of the sequence
need to be removed for it to be monotonically
increasing, then the algorithm rejects (resp. accepts)
with probability at least 2/3 (resp., less than 1/3).
 Suppose not, that Algorithm 3 accepts with probability

at least 1/3.

54Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 We call index i is
 “good” if the binary search for xi is successful,

 “bad” otherwise.

55Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 For example,

1 2 3 4 5 6 7 8 9

6 4 2 5 8 0 12 14 10

index

value

4 12

8
: good ones

: bad ones
14

5 10

6 2 0

56Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 We claim that less than n of the indices are bad.
 Otherwise, each time through the loop, the algorithm

finds a bad index with probability at least .
 Then Algorithm 3 accepts with probability at most

(1)c/ < ec < 1/3 for some constant c.

 A contradiction then occurs.

 Now, the remaining part is to prove that the good
points indeed form a monotonically increasing
subsequence.

57Dept. CSIE, TKU, Taiwan

Testing monotonicity of a list (cont’d)

 Consider any two good indices i, j , where i < j.

 Consider the first point in the binary search path
where xi and xj diverge and assume that point has
value u.

 Since i and j are good and i < j, we can conclude
that xi u xj. This concludes the proof.

¥

58Dept. CSIE, TKU, Taiwan

 Now, let us consider another problem:

Testing connectivity of a graph.

59Dept. CSIE, TKU, Taiwan

Connected and Disconnected

connected

disconnected

60Dept. CSIE, TKU, Taiwan

Degree bound

 We say a graph G(V, E) has a degree bound d if for
each vertex v V,

where deg(v) is the number of vertices adjacent to
v in G.

deg(v) · d

61Dept. CSIE, TKU, Taiwan

Graph representations

 Adjacency matrix
 For dense graphs

 Adjacency list
 For sparse graphs

A B

CD

A

B

C

D

A B

CD

A B C D
A
B
C
D

C D

D

A

A B

62Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph

 We will adopt the adjacency list model with a
given degree bound d to proceed with our
discussion.
 The graph possesses O(dn) edges.

63Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

64Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 Let , we define the distance of G from
connected to be

where is the minimum number of
modifications of edges needed for G to be
connected such that the degree bound d is still
maintained.

½d(G)

65Dept. CSIE, TKU, Taiwan

For example, (d = 2)

v1 v2

v4v3

G

66Dept. CSIE, TKU, Taiwan

Another example, (d = 2)

v5
G

v1 v2

v3

v4

v6

WHY?

67Dept. CSIE, TKU, Taiwan

Idea

 If a graph is far from connected, there must be
many components,
 That in turn implies that there are many small

components.

 Consider the following algorithm proposed by
O. Goldreich and D. Ron.

- Algorithmica, Vol. 32, 2002.

68Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

69Dept. CSIE, TKU, Taiwan

An illustration

Pick 2 nodes of the graph, and traverse
at most 4 nodes during each BFS.

STOP

The component
is exhausted!

Halt and output: “Fail”

70Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 The running time of Algorithm GR is

which is sublinear.

 Why does this algorithm work?

71Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 For if GP, it is obvious that the
algorithm must output “Pass”.
 Maybe you don’t think that this is trivial. You can prove

this claim for an easy exercise.

 So, what if GP?
 We have to prove that if G is far from P, (i.e., G is far

from connected with degree bound d) Algorithm GR
will output “Fail” with probability at least 2/3.

72Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 Consider the following observation first.

 Observation:

 Proof:
 If G has less than dn /2 connected components, we can

add less than dn /2 edges to make G connected.

 G is not -far from connected. (Because dn/dn =)
¥

73Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 Lemma 1:

 Proof: Exercise!
 Hint: Consider the previous observation and the second

example for illustrating .dist(G;P)

A class of connected graphs with
bounded degree d

If G 2 Gd
n is ²-far from P , then G has at least ²dn=4

connected components.

74Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 Corollary 1:

 Proof:
 Let n< be the number of components of size less than

 Let n> be the number of components of size at least

 We call them small components for simplicity.

75Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 Assume that G is -far from P. Then from
Lemma 1 we have that G has at least dn/4
connected components.

 Since n< + n> is the total number of connected
components in G, we have n< +n> dn/4.

 Since n> 8/d n, we have n> dn/8.

 Therefore, n< dn/4 dn/8 = dn/8, the
corollary immediately follows. ¥

76Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 Theorem 1:

 Proof of Theorem 1 is as follows.

77Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 If G is connected, Algorithm GR must output
“Pass”.
 Trivial.

 Consider the case that G is -far from P.

78Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 By Corollary 1,

Each component is of size at
least one and they are dis-
joint.

From Corollary 1.

79Dept. CSIE, TKU, Taiwan

Testing connectivity of a graph (cont’d)

 Since m is chosen to be c/d for some constant c,
we have

Therefore, the proof is done. ¥

These inequalities holds as long
as we pick c large enough (c

0
is a

constant that depends on c).

I think I should end
this talk now.

Dept. CSIE, TKU, Taiwan 80

Textbook

Dept. CSIE, TKU, Taiwan 81

Further
readings

 A Brief Introduction to Property
Testing by Oded Goldreich:
 https://www.wisdom.weizmann.ac

.il/~oded/COL/pt-intro.pdf

 Sublinear Time Algorithms by
Ronitt Rubinfeld:
 http://theory.lcs.mit.edu/%7Eronitt

/sublinear.html

Dept. CSIE, TKU, Taiwan 82

Thank you.

