How Good is a Two-Party Election Game?

Speaker: Chuang-Chieh Lin

Joint work with

Chi-Jen Lu and Po-An Chen

Invited Talk in National Taipei University of Business

17th June 2021

Lin, Lu, Chen (TKU, IIS AS, NCYU)

Two Party Election Game

Chuang-Chieh Lin 林莊傑

Dept. Computer Science and Information Engineering, Tamkang University

Institute of Information Science, Academia Sinica

Chi-Jen Lu

吕及人

Po-An Chen 陳柏安

Institute of Information Management, National Yang-Ming Chiao-Tung University

< 口 > < 同 >

- 4 ⊒ ▶

æ

Self Introduction

Academic Experience:

- 06/2002: B.S., Mathematics, NCKU.
- 06/2004: M.S., CSIE, NCNU.
- 09/2007–08/2008: DAAD-NSC Sandwich Project
- 07/2011: Ph.D., CSIE, CCU.
- 09/2011-02/2018: Postdoc in Academia Sinica.
- 02/2021–Present: Assistant Professor, CSIE, TKU.

Industry Experience:

- 03/2018–12/2019: Quantitative Analyst @ Point72/Cubist Systematic Strategies
- 01/2020–01/2021: Quantitative Analyst @ Seth Technologies

Outline

- 1 Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: \geq 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- 6 Concluding Remarks

Outline

- 1 Introduction and Motivations
 - 2 The Formal Setting
 - 3 The First Equilibrium Existence Results
 - 4 Generalization: \geq 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- 6 Concluding Remarks

Two Party Election Game Introduction and Motivations

The Inspiration

"[...] and that government of the people, by the people, for the people, shall not perish from the earth."

— Abraham Lincoln, 1863.

Two Party Election Game Introduction and Motivations

Motivations (I): Why The Two-Party System?

"The simple-majority single-ballot system favours the two-party system." — Maurice Duverger, 1964.

Motivations (II): Social Choice Rules

Example:

- Each voter provides an ordinal ranking of the candidates,
- Aggregate these rankings to produce either a single winner or a consensus ranking of all (or some) candidates.

Motivations (II): Social Choice Rules

Example:

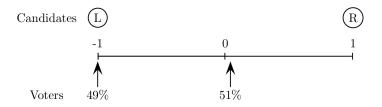
- Each voter provides an ordinal ranking of the candidates,
- Aggregate these rankings to produce either a single winner or a consensus ranking of all (or some) candidates.

Gibbard–Satterthwaite Theorem (1973)

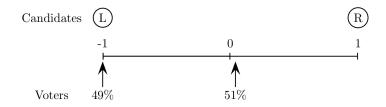
Given a deterministic electoral system that choose a single winner. For every voting rule, one of the following three things must hold:

- The rule is dictatorial.
- The rule limits the possible outcomes to two alternatives only.
- The rule is susceptible to tactical voting.

Motivations (III): Distortion of Social Choice Rules



Motivations (III): Distortion of Social Choice Rules



- The average distance from the population to candidate L: $\approx 0.5.$
- The average distance from the population to candidate R: ≈ 1.5 .
- But R will be elected as the winner in the election.

Issues of Previous Studies

- Voters' behavior on a micro-level.
 - Voters are strategic;
 - Voters have different preferences for the candidates.
 - Various election rules result in different winner(s).

Issues of Previous Studies

- Voters' behavior on a micro-level.
 - Voters are strategic;
 - Voters have different preferences for the candidates.
 - Various election rules result in different winner(s).

- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);

- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);
 - The point is:

Our Focus

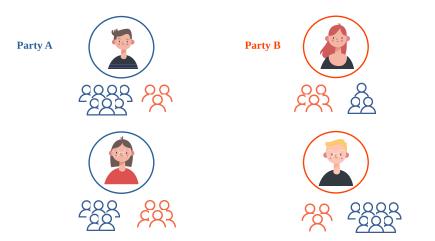
- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);
 - The point is:
 - Who is more likely to win the election campaign and how likely is it?

Our Focus

- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);
 - The point is:
 - Who is more likely to win the election campaign and how likely is it?
 - Is the game stable in some sense?

Our Focus

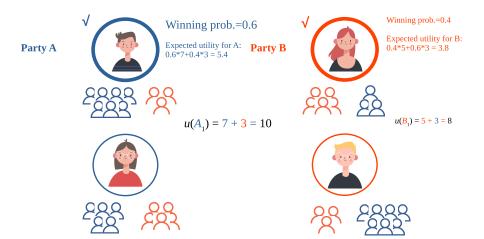
- We consider an intuitive macro perspective instead.
 - Parties are players;
 - The strategies can be their nominated candidates (or policies);
 - The point is:
 - Who is more likely to win the election campaign and how likely is it?
 - Is the game stable in some sense?
 - What's the price for stability which resembles "the distortion"?



イロト イヨト イヨト

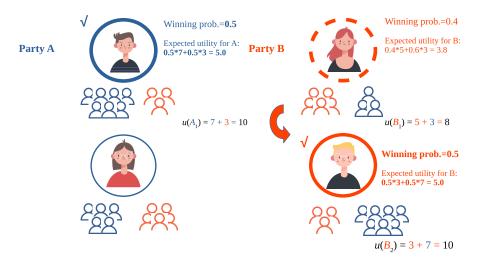
æ

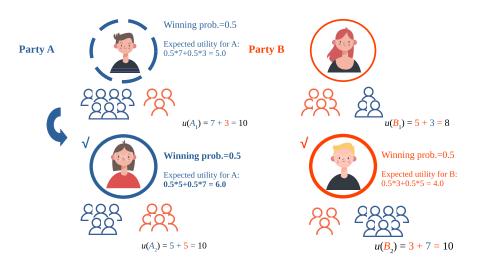
Two Party Election Game Introduction and Motivations

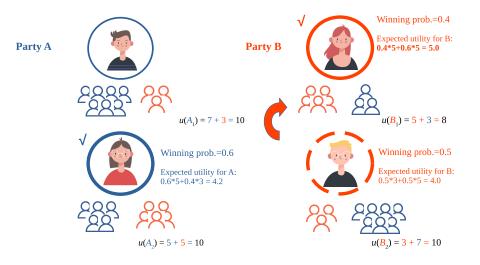


イロト イヨト イヨト

æ



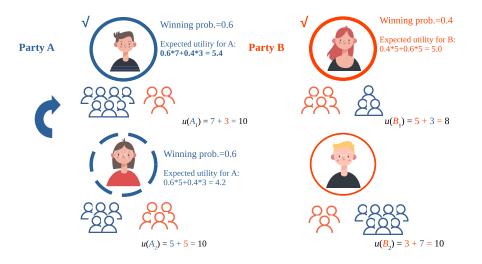




17 Jun 2021

▶ < ∃ >

• • • • • • • • • •



Lin, Lu, Chen (TKU, IIS AS, NCYU)

Two Party Election Game

17 Jun 2021

Concept of Stability: Pure Nash Equilibrium

- Each party's strategy: candidate nomination.
- Pure Nash equilibrium (PNE): Neither party A nor B wants to deviate (i.e., change) from their strategy (i.e., nomination) unilaterally.

An instance with a PNE.

æ

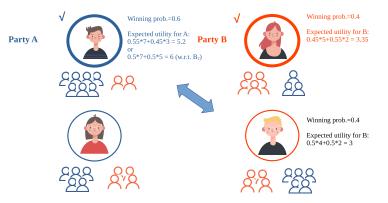
An instance with a PNE (expected social utility: 8.55).

< (T) >

∃ →

A Kind of Inefficiency Measure: The Price of Anarchy

An instance with a PNE (expected social utility: 8.55, optimum: 9).



• The price of anarchy (POA): $\frac{9}{8.55} \approx 1.05$.

Outline

- Introduction and Motivations
- 2 The Formal Setting
 - 3 The First Equilibrium Existence Results
 - 4 Generalization: \geq 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- 6 Concluding Remarks

18/51

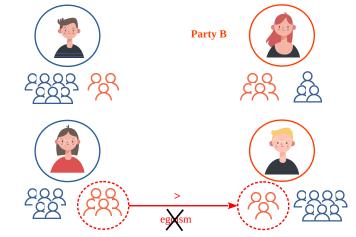
Two-Party Election Game: Formal Setting

- Party A: m candidates A₁, A₂,..., A_m.
 Party B: n candidates B₁, B₂,..., B_n.
- A_i : brings utility $u(A_i) = u_A(A_i) + u_B(A_i) \in [0, b]$, B_j : brings utility $u(B_j) = u_A(B_j) + u_B(B_j) \in [0, b]$, for some $b \ge 1$. • $u_A(A_1) \ge u_A(A_2) \ge \ldots \ge u_A(A_m)$, $u_B(B_1) \ge u_B(B_2) \ge \ldots \ge u_B(B_n)$
- $p_{i,j}$: $\Pr[A_i \text{ wins over } B_j]$.
- Expected utilities:

$$\begin{aligned} a_{i,j} &= p_{i,j} u_A(A_i) + (1 - p_{i,j}) u_A(B_j) \\ b_{i,j} &= (1 - p_{i,j}) u_B(B_j) + p_{i,j} u_B(A_i). \end{aligned}$$

Two Party Election Game The Formal Setting

Egoism (Selfishness)



Two Party Election Game

< 一型

문 문 문

- Party A: m candidates A₁, A₂,..., A_m.
 Party B: n candidates B₁, B₂,..., B_n.
- A_i : brings utility $u(A_i) = u_A(A_i) + u_B(A_i) \in [0, b]$, B_j : brings utility $u(B_j) = u_A(B_j) + u_B(B_j) \in [0, b]$, for some $b \ge 1$. • $u_A(A_1) \ge u_A(A_2) \ge \ldots \ge u_A(A_m)$, $u_B(B_1) \ge u_B(B_2) \ge \ldots \ge u_B(B_n)$
- $p_{i,j}$: $\Pr[A_i \text{ wins over } B_j]$.
- Expected utilities:

$$\begin{aligned} \mathsf{a}_{i,j} &= p_{i,j} u_A(A_i) + (1 - p_{i,j}) u_A(B_j) \\ \mathsf{b}_{i,j} &= (1 - p_{i,j}) u_B(B_j) + p_{i,j} u_B(A_i). \end{aligned}$$

• egoistic: $u_A(A_i) > u_A(B_j)$ and $u_B(B_j) > u_B(A_i)$ for all $i \in [m], j \in [n]$.

- Three models on *p_{i,j}*:
 - Bradley-Terry (Naïve): $p_{i,j} := u(A_i)/(u(A_i) + u(B_j))$
 - Linear dependency on the two social utilities.
 - Intuitive.
 - Linear link: $p_{i,j} := (1 + (u(A_i) u(B_j))/b)/2.$
 - Linear on the difference between the two social utilities.
 - Dueling bandit setting.
 - Softmax: $p_{i,j} := e^{u(A_i)/b} / (e^{u(A_i)/b} + e^{u(B_j)/b})$
 - Bivariate nonlinear rational function of the two social utilities.
 - Extensively used in machine learning.

- The social welfare of state (*i*, *j*): $SU_{i,j} = a_{i,j} + b_{i,j}.$
- (i,j) is a PNE if $a_{i',j} \leq a_{i,j}$ for any $i' \neq i$ and $b_{i,j'} \leq b_{i,j}$ for any $j' \neq j$.

23/51

• The social welfare of state (*i*, *j*):

$$SU_{i,j} = a_{i,j} + b_{i,j}.$$

• (i,j) is a PNE if $a_{i',j} \leq a_{i,j}$ for any $i' \neq i$ and $b_{i,j'} \leq b_{i,j}$ for any $j' \neq j$.

• The PoA of the game:

$$rac{SU_{i^*,j^*}}{SU_{\hat{i},\hat{j}}} = rac{a_{i^*,j^*}+b_{i^*,j^*}}{a_{\hat{i},\hat{j}}+b_{\hat{i},\hat{j}}},$$

- $(i^*, j^*) = \arg \max_{(i,j) \in [m] \times [n]} (a_{i,j} + b_{i,j})$: the optimal state.
- $(\hat{i}, \hat{j}) = \arg \min_{\substack{(i,j) \in [m] \times [n] \\ (i,j) \text{ is a PNE}}} (a_{i,j} + b_{i,j})$: the PNE with **the worst** social welfare.

Two Party Election Game The First Equilibrium Existence Results

Outline

- Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
 - 4 Generalization: \geq 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- 6 Concluding Remarks

Preliminary Inspections for the PNE

Focus on m = n = 2 first.

• First try: by human brains and human eyes.

25 / 51

Preliminary Inspections for the PNE

Focus on m = n = 2 first.

- First try: by human brains and human eyes.
 - Difficult. 😊

Preliminary Inspections for the PNE

Focus on m = n = 2 first.

- First try: by human brains and human eyes.
 - Difficult. 😳
- Random sampling: 😊
 - Sampling the values of $u_A(A_i)$, $u_B(A_i)$, $u_A(B_j)$, $u_B(B_j)$ for each i, j and the constant b for hundreds of millions times.
 - Experiments for the three winning probability models.

Example: No PNE in the Bradley-Terry Model

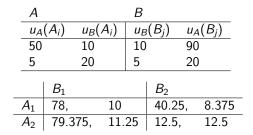
m = n = 2, b = 100 (left: egoistic, right: non-egoistic).

Α			В				Α			В	
U _A	(A_i)	$u_B(A_i)$	u _B ((B_j)	$u_A(B_j)$	_	UА	(A_i)	$u_B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
91		0	11		1	-	44		10	37	17
90)	8	10		20		39		55	10	5
						-		_			
		B_1		B_2				B_1		B_2	
	A_1	80.51, 1	.28	73.8	34, 2.17		A_1	30.5	0, 23.50	35.52,	10.00
	A_2	80.29, 8	.32	74.(02, 8.23		A_2	30.9	7, 48.43	34.32,	48.81
					-		-				

イロト 不得 ト イヨト イヨト

Example: No PNE in the Linear-Link Model (Non-Egoism)

$$m = n = 2, b = 100.$$



Non-Egoistic Games Seem to Be Bad ©

* In our experiments, EVERY egoistic game instance in the linear-link/softmax model has a PNE!

Non-Egoistic Games Seem to Be Bad ©

- * In our experiments, EVERY egoistic game instance in the linear-link/softmax model has a PNE!
- The following discussions on equilibrium existence consider only egoistic games.

28/51

The Dominating-Strategy Equilibrium

Lemma (The Dominating-Strategy Equilibrium)

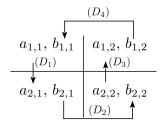
- If $u(A_1) > u(A_i)$ for each $i \in [n] \setminus \{1\}$, then $(1, j^{\#})$ is a PNE for $j^{\#} = \arg \max_{j \in [m]} b_{1,j}$.
- If $u(B_1) > u(B_j)$ for each $j \in [m] \setminus \{1\}$, then $(i^{\#}, 1)$ is a PNE for $i^{\#} = \arg \max_{i \in [n]} a_{i,1}$.

The Dominating-Strategy Equilibrium

Lemma (The Dominating-Strategy Equilibrium)

- If $u(A_1) > u(A_i)$ for each $i \in [n] \setminus \{1\}$, then $(1, j^{\#})$ is a PNE for $j^{\#} = \arg \max_{j \in [m]} b_{1,j}$.
- If $u(B_1) > u(B_j)$ for each $j \in [m] \setminus \{1\}$, then $(i^{\#}, 1)$ is a PNE for $i^{\#} = \arg \max_{i \in [n]} a_{i,1}$.
- Hence, the puzzles come from the other cases...

No PNE \Leftrightarrow Cycles of Deviations



	(D'_4)
$a_{1,1}, b_{1,1}$	$a_{1,2}, b_{1,2}$
$\bigstar(D_1')$	(D'_3)
$a_{2,1}, b_{2,1}$	$a_{2,2}, b_{2,2}$
≜	(D'_2)

Lin, Lu, Chen (TKU, IIS AS, NCYU)

Two Party Election Game

17 Jun 2021

Deviations \rightarrow Inequalities

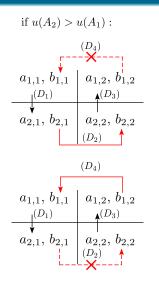
$$\begin{split} \Delta(D_2) &= -\Delta(D'_2) = b_{2,2} - b_{2,1} & \Delta(D_4) = -\Delta(D'_4) = b_{1,1} - b_{1,2} \\ &= (1 - p_{2,2})u_B(B_2) + p_{2,2}u_B(A_2) &= (1 - p_{1,1})u_B(B_1) + p_{1,1}u_B(A_1) \\ &-((1 - p_{2,1})u_B(B_1) + p_{2,1}u_B(A_2)) & -((1 - p_{1,2})u_B(B_2) + p_{1,2}u_B(A_1)) \\ &= -(1 - p_{2,1})(u_B(B_1) - u_B(B_2)) &= (1 - p_{1,1})(u_B(B_1) - u_B(B_2)) \\ &+(p_{2,1} - p_{2,2})(u_B(B_2) - u_B(A_2)). &+(p_{1,2} - p_{1,1})(u_B(B_2) - u_B(A_1)). \end{split}$$

Lin, Lu, Chen (TKU, IIS AS, NCYU)

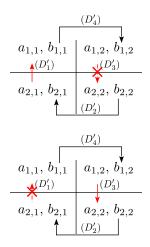
17 Jun 2021

æ

The Crucial Lemma



if $u(B_2) > u(B_1)$:



э

The Crucial Lemma

Lemma (Main Lemma for the Linear-Link & Softmax Models)

Consider the two-party election game in the linear-link/softmax model.

•
$$\Delta(D'_3) > 0 \Rightarrow \Delta(D'_1) < 0.$$

The Crucial Lemma

Lemma (Main Lemma for the Linear-Link & Softmax Models)

Consider the two-party election game in the linear-link/softmax model.

• If
$$u(A_2) > u(A_1)$$
, then

•
$$\Delta(D_2) > 0 \Rightarrow \Delta(D_4) < 0$$

•
$$\Delta(D_4) > 0 \Rightarrow \Delta(D_2) < 0.$$

• If
$$u(B_2) > u(B_1)$$
, then

•
$$\Delta(D'_1) > 0 \Rightarrow \Delta(D'_3) < 0.$$

•
$$\Delta(D'_3) > 0 \Rightarrow \Delta(D'_1) < 0.$$

Theorem (First Equilibrium Existence Result for m = n = 2)

In the linear-link/softmax model with m = n = 2, the two-party election game always has a PNE. \bigcirc

Lin, Lu, Chen (TKU, IIS AS, NCYU)

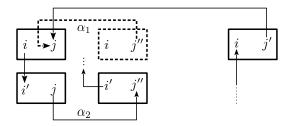
Two Party Election Game Generalization: \geq 2 Candidates for Each Party

Outline

- Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: \geq 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- 6 Concluding Remarks

Two Party Election Game Generalization: > 2 Candidates for Each Party

What if a party has three or more candidates?



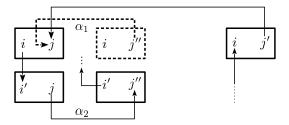
Lin, Lu, Chen (TKU, IIS AS, NCYU)

Two Party Election Game

17 Jun 2021

Two Party Election Game Generalization: > 2 Candidates for Each Party

What if a party has three or more candidates?



Theorem (Equilibrium Existence Result for $m, n \ge 2$)

The two-party election game with $m \ge 2$ and $n \ge 2$ always has a PNE in the linear-link/softmax model. \bigcirc

Lin, Lu, Chen (TKU, IIS AS, NCYU)

Two Party Election Game Generalization: \geq 2 Candidates for Each Party

Summary of Our Results

	Linear Link	Bradley-Terry	Softmax
PNE w/ egoism	\checkmark	×	\checkmark
PNE w/o egoism	×	×	?#

Two Party Election Game The Price of Anarchy Bounds

Outline

- Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: \geq 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
 - 6 Concluding Remarks

Relating PNE to OPT

• *i* dominates i': i < i' and $u(A_i) > u(A_{i'})$.

Lemma (Property I: PNE and Domination)

•
$$\exists i', i'$$
 dominates $i \Rightarrow (i, j)$ is not a PNE for any $j \in [n]$.

• $\exists j', j'$ dominates $j \Rightarrow (i,j)$ is not a PNE for any $i \in [m]$.

Proposition (Property II: Relating a PNE to the OPT State)

Let's say we have

- (*i*, *j*): a PNE
- (i^*, j^*) : the optimal state.

Then, $u(A_i) + u(B_j) \ge \max\{u(A_{i^*}), u(B_{j^*})\}.$

38 / 51

Illustrating Example: In the Linear-Link Model

For $i \in [m]$, $j \in [n]$,

$$\begin{aligned} SU_{i,j} &= p_{i,j} \cdot u(A_i) + (1 - p_{i,j}) \cdot u(B_j) \\ &= \frac{1 + (u(A_i) - u(B_j))/b}{2} \cdot u(A_i) + \frac{1 - (u(A_i) - u(B_j))/b}{2} \cdot u(B_j) \\ &= \frac{1}{2}(u(A_i) + u(B_j)) + \frac{1}{2b}(u(A_i) - u(B_j))^2 \\ &\geq \frac{1}{2}(u(A_i) + u(B_j)). \end{aligned}$$

and

$$SU_{i,j} = p_{i,j} \cdot u(A_i) + (1 - p_{i,j}) \cdot u(B_j) \le \max\{u(A_i), u(B_j)\}.$$

Lin, Lu, Chen (TKU, IIS AS, NCYU)

Illustrating Example: In the Linear-Link Model (contd.)

Theorem (PoA Bound for Linear-Link)

The two-party election game in the linear link model has $PoA \leq 2$.

Proof.

(i, j): a PNE; (i^*, j^*) : OPT. By the previous Lemma:

$$\left(\begin{array}{c} i ext{ is not dominated by } i^* \\ j ext{ is not dominated by } j^* \end{array}
ightarrow \left\{ \begin{array}{c} i \leq i^* ext{ or } u(A_{i^*}) \leq u(A_i) \\ j \leq j^* ext{ or } u(B_{j^*}) \leq u(B_j) \end{array}
ight.$$

• $SU_{i^*,j^*} \le \max\{u(A_{i^*}), u(B_{j^*})\}, \max\{u(A_{i^*}), u(B_{j^*})\} \le u(A_i) + u(B_j).$ • $2 \cdot SU_{i,j} \ge u(A_i) + u(B_j).$

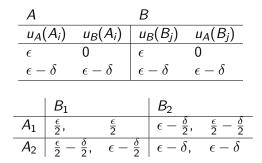
Thus, $SU_{i,j} \ge SU_{i^*,j^*}/2$.

Image: A matrix and a matrix

э

Illustrating Example: In the Linear-Link Model (Lower Bound)

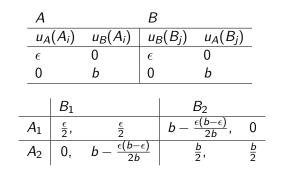
• A tight example (PoA \approx 2; $\delta \ll \epsilon \ll b$).



The PoA of non-egoistic games can be really bad...

Unbounded PoA for Non-Egoistic Games

Linear-Link Model:



• PoA = $\frac{b}{\epsilon}$.

Unbounded PoA for Non-Egoistic Games

Softmax Model:

$\begin{array}{c cccc} \hline u_A(A_i) & u_B(A_i) & u_B(B_j) & u_A(B_j) \\ \hline \epsilon & 0 & \epsilon & 0 \\ 0 & b & 0 & b \end{array}$			В	
$egin{array}{cccc} \epsilon & 0 & \epsilon & 0 \ 0 & b & 0 & b \end{array}$	$_A(A_i)$ L	$B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
0 <i>b</i> 0 <i>b</i>	0		ϵ	0
	Ŀ)	0	b

	B_1		B_2	
A_1	$\frac{\epsilon e^{\epsilon}}{e^{\epsilon}+1}$,	$rac{\epsilon e^{\epsilon}}{e^{\epsilon}+1}$	$rac{\epsilon e^{\epsilon} + eb}{e^{\epsilon} + 1}$,	0
A_2	0,	$rac{\epsilon e^{\epsilon} + eb}{e^{\epsilon} + 1}$	$\frac{b}{2}$,	$\frac{b}{2}$

•
$$\operatorname{PoA} = \frac{b}{2\epsilon e^{\epsilon}/(e^{\epsilon}+1)}$$
.

∃ >

Unbounded PoA for Non-Egoistic Games

Bradley-Terry Model:

Α				В			
u,	$A(A_i)$	u _B ((A_i)	и _Е	$B_{3}(B_{j})$	uд	(B_j)
ϵ		0		ϵ		0	
0		b		0		b	
		B_1			<i>B</i> ₂		
	A_1	$\frac{\epsilon}{2}$,	$\frac{\epsilon}{2}$		$\frac{\epsilon^2 + b^2}{b + \epsilon}$,	0
	A_2	0,	$\frac{\epsilon^2 +}{b+}$	$\frac{b^2}{\epsilon}$	$\frac{b}{2}$,		$\frac{b}{2}$

• PoA = $\frac{b}{\epsilon}$.

Summary of Our Results +(PoA)

	Linear Link	Bradley-Terry	Softmax
PNE w/ egoism	\checkmark	×	\checkmark
PNE w/o egoism	×	×	?#
PoA upper bound w/ egoism	2	2	1+e
PoA lower bound w/ egoism	2	6/5	2
Worst PoA w/o egoism	∞	∞	∞

Outline

- Introduction and Motivations
- 2 The Formal Setting
- 3 The First Equilibrium Existence Results
- 4 Generalization: \geq 2 Candidates for Each Party
- 5 The Price of Anarchy Bounds
- 6 Concluding Remarks

Future Work

	Linear Link	Bradley-Terry	Softmax
PNE w/ egoism	\checkmark	×	\checkmark
PNE w/o egoism	×	×	?#
PoA upper bound w/ egoism	2	2	1 + e
PoA lower bound w/ egoism	2	6/5	2
Worst PoA w/o egoism	∞	∞	∞

•

• • • • • • • •

æ

Future Work (contd.)

- Three or more parties.
 - How to define the winning probabilities?

49/51

Future Work (contd.)

- Three or more parties.
 - How to define the winning probabilities?
- The correspondence between macro and micro settings.

49/51

Future Work (contd.)

- Three or more parties.
 - How to define the winning probabilities?
- The correspondence between macro and micro settings.
- More general models.
 - Extension to monotone game.
- PoA w.r.t. NE.

Two Party Election Game Concluding Remarks

- Election campaign \rightarrow Project proposal.
- \bullet Winner-takes-all \rightarrow Budget or prize shared in proportion.

Thank you.

*Special Acknowledgment: Inserted Pictures Were Designed by Freepik.