
Future Generation Computer Systems 37 (2014) 478–487
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Integrating QoS awareness with virtualization in cloud computing
systems for delay-sensitive applications
Jenn-Wei Lin a,∗, Chien-Hung Chen a, Chi-Yi Lin b

a Department of Computer Science and Information Engineering, Fu Jen Catholic University, Taiwan, ROC
b Department of Computer Science and Information Engineering, Tamkang University, Taiwan, ROC

h i g h l i g h t s

• We investigate the QoS-aware virtual machine placement (QAVMP) problem.
• We formulate the QAVMP problem as an Integer Linear Programming (ILP) model.
• We propose a polynomial-time heuristic algorithm to efficiently solve the QAVMP problem.
• A bipartite graph is used to model all possible placement relationships of virtual machines.
• The proposed heuristic algorithm can maximize the profit of cloud provider.

a r t i c l e i n f o

Article history:
Received 27 December 2012
Received in revised form
3 October 2013
Accepted 13 December 2013
Available online 9 January 2014

Keywords:
Cloud computing
Virtualization
Quality of service
Technique integration
Heuristic algorithm

a b s t r a c t

Cloud computing provides scalable computing and storage resources over the Internet. These scalable re-
sources can be dynamically organized as many virtual machines (VMs) to run user applications based on
a pay-per-use basis. The required resources of a VM are sliced from a physical machine (PM) in the cloud
computing system. A PMmay hold one or more VMs. When a cloud provider would like to create a num-
ber of VMs, the main concerned issue is the VM placement problem, such that how to place these VMs at
appropriate PMs to provision their required resources of VMs. However, if two or more VMs are placed at
the same PM, there exists certain degree of interference between these VMs due to sharing non-sliceable
resources, e.g. I/O resources. This phenomenon is called as the VM interference. The VM interference will
affect the performance of applications running in VMs, especially the delay-sensitive applications. The
delay-sensitive applications have quality of service (QoS) requirements in their data access delays. This
paper investigates how to integrate QoS awareness with virtualization in cloud computing systems, such
as the QoS-aware VM placement (QAVMP) problem. In addition to fully exploiting the resources of PMs,
the QAVMP problem considers the QoS requirements of user applications and the VM interference reduc-
tion. Therefore, in the QAVMP problem, there are following three factors: resource utilization, application
QoS, and VM interference.We first formulate the QAVMP problem as an Integer Linear Programming (ILP)
model by integrating the three factors as the profit of cloud provider. Due to the computation complex-
ity of the ILP model, we propose a polynomial-time heuristic algorithm to efficiently solve the QAVMP
problem. In the heuristic algorithm, a bipartite graph is modeled to represent all the possible placement
relationships between VMs and PMs. Then, the VMs are gradually placed at their preferable PMs to max-
imize the profit of cloud provider as much as possible. Finally, simulation experiments are performed to
demonstrate the effectiveness of the proposed heuristic algorithm by comparing with other VM place-
ment algorithms.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Cloud computing provides scalable computing and storage
resources via the Internet. User can use these infrastructure

∗ Corresponding author. Tel.: +886 229053855.
E-mail address: jwlin@csie.fju.edu.tw (J.-W. Lin).

0167-739X/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.12.034
resources (computing and storage resources) based on a pay-per-
use basis. This deliverymodel of infrastructure as a service (IaaS)has
been provided by several cloud providers, such as Amazon Elas-
tic Compute Cloud (EC2) [1], Google Compute Engine (GCE) [2],
and GoGrid [3], etc. In the IaaS delivery model, the key technol-
ogy is how to efficiently virtualize the computing and storage re-
sources of physical machines (PMs) to provision a large number of
virtual machines (VMs). Each customer (user) can rent a VM from
the cloud provider to execute his/her application. Amazon EC2

http://dx.doi.org/10.1016/j.future.2013.12.034
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.12.034&domain=pdf
mailto:jwlin@csie.fju.edu.tw
http://dx.doi.org/10.1016/j.future.2013.12.034

J.-W. Lin et al. / Future Generation Computer Systems 37 (2014) 478–487 479
provides different instance types of VMs to meet the computing
needs of users [4]. Several virtualization technologies (e.g. Xen [5],
VMware [6], KVM [7]) have been used in cloud computing systems.
Using the virtualization technologies, more than one VM can be
created in the same PM, each of which acquires its required re-
sources by slicing a portion of resources from the PM. For exam-
ple, in Amazon EC2, assume that a small instance VM i and a large
instance VM j are created on the same PM p. The PM p will be vir-
tualized to form amachine with 1 EC2 Compute Unit, 1.7 GBmem-
ory, 160 GB instance storage for VM i and a machine with 4 EC2
Compute Units, 7.5 GB memory, 850 GB instance storage for VM
j. However, the existing virtualization technologies cannot slice all
hardware resources of a PM. Some types of hardware resources are
non-sliceable, which are called the non-sliceable resources. For ex-
ample, in [8], it clearly indicated that the disk I/O, network I/O, and
L2 cache are the non-sliceable resources. In [9], the authors also
claimed that I/O virtualization is a big challenge, and there is no
ideal solution. It is common that two or more VMs on the same PM
will contend the non-sliceable resources. In a VM, the application
cannot be executed in a fully isolated computing environment. It is
inevitable that if VMs i and j are created in the same PM, the appli-
cation running on VM i will affect the performance of the applica-
tion running on VM j. It means that, for the VMs on the same PM,
there exists performance interference among the VMs. We use the
term VM interference to describe this phenomenon. For two VMs
on different PMs, their performance may be also interfered with
each other if their corresponding applications are dependent with
each other. This type of VM interference is not discussed in this
paper since the issue is not introduced due to the contention of
non-sliceable resources of a PM.

For a network I/O (delay-sensitive) application, its QoS require-
ment is usually defined how much time is taken to process a net-
work I/O request. If the process time of the network I/O request is
equal to or less than a pre-specified time requirement in the ser-
vice level agreement (SLA). The QoS requirement of the application
is satisfied. From the view point of a VM, the QoS requirement of
its running application can be preliminary met by allocating ap-
propriate resource to the VM.However, ifmultiple VMs are created
on the same PM, each VMmay incur certain degree of performance
degradation due to theVM interference. In such situation, theVM is
difficult to guarantee that its computing environments can contin-
uously meet the QoS requirement of its running application. Even
if there are few VMs on the same PM, it is also an inappropriate
placement to allocate two ormore VMswith high-QoS applications
at the same PM. From the cloud provider perspective, if the cre-
ated VMs cannot provide the computing environments to satisfy
the QoS requirements of running applications, it will pay penalties
due to violating the service level agreements (SLAs) with users.

In this paper, we investigate how to integrate QoS awareness
with virtualization for efficiently performing delay-sensitive appli-
cations in cloud computing systems. Specifically, we called it the
QoS-aware virtual machine placement (QAVMP) problem. In cloud
computing, most of applications are with the data-intensive fea-
ture to frequently read andwrite data. The data is also stored based
on the distributed manner. Therefore, a data access will involve
one or more network I/O operations which is processed by the
non-sliceable resource: network interface card.With involving the
non-sliceable resource, the data access of one applications will be
affected by other applications due to the VM interference. For a
delay-sensitive application, if its data access delay is larger than
its expected data response time stated in the service level agree-
ment (SLA), the QoS requirement of this application will be vio-
lated. Compared to previous VM placement strategies [10–19], our
QAVMP problem considers the QoS requirements of applications
and VM interference in addition to the resource utilization of PMs.
With the three concerned factors in the QAVMP problem, its opti-
mal solution is difficult to be found. By integrating the three con-
cerned factors into the profit metric of a cloud provider, we can
formulate the QAVMP problem as an integer linear programming
(ILP) model to find its optimal solution. However, long computa-
tion time will be required to find the optimal solution. To seek a
time-efficient solution to the QAVMP problem, we also propose a
heuristic algorithm with polynomial time to solve the problem. In
the proposed heuristic algorithm, a bipartite graph is first used to
model all the possible placement relationships between VMs and
PMs. Based on the bipartite graph, eachVM is gradually placed at its
preferable PM to maximize the profit metric of the cloud provider
as much as possible. Overall, the main contributions of this paper
are summarized as follows.

• Unlike prior VM placement strategies in [10–19], our QAVMP
problem additionally takes the VM interference effects and
Qos requirements of applications into the VM placement. The
proposed algorithm can reduce the VM interference and avoid
violating the QoS requirements of applications after the VM
placement.

• The proposed QAVMP algorithm also considers the dynamical
VM creation requests. The VM creation requests arrive dynami-
cally without any knowledge of future requests. Before creating
a number of new VMs on a PM, the PM may possibly hold sev-
eral existing VMs. The VM interference also exists among the
existing VMs and the new VMs.

• We use an ILP model to formulate the optimal solution of the
QAVMP problem.

• We propose a heuristic placement algorithm to efficiently solve
the QAVMP problem in polynomial time.

The rest of the paper is organized as follows. In Section 2, we
introduce the preliminaries of this paper. In Section 3, we propose
an ILP model to solve the QAVMP problem optimally. In addition,
the heuristic algorithm of the QAVMP problem is also presented.
In Section 4, we conduct simulation experiments to evaluate the
performance of the proposed heuristic algorithm. Finally, Section 5
concludes the paper.

2. Preliminaries

In this section, we give brief introduction to virtualization tech-
niques and describe the system model used in our paper. Further-
more, we also review the previous VM placement schemes.

2.1. Virtualization techniques

Virtualization techniques can make hardware resources of a
physical machine (PM) to be shared with multiple operating sys-
tems. It respectively provides a virtual environment for each op-
erating system in the PM. Therefore, an operating system in the
virtual environment can be viewed as an independent virtual ma-
chine (VM). There are two types of virtualization techniques: full
virtualization and para-virtualization. The full virtualization emu-
lates a complete hardware environment to be compatible with any
operating systems. This approach is very popular, because it does
not have to modify the original operating systems. However, it in-
creases some overhead due to the virtualization of the hardware
devices. Para-virtualization is another approach that can improve
the efficiency of hardware virtualization. Using para-virtualization,
the operating systems are aware of working in a virtual environ-
ment. In other words, the operating systems must be modified for
virtualization. Regardless of adopting which one of the virtualiza-
tion techniques, it requires amonitor to handle resource allocation
for the VMs.

2.2. Xen hypervisor

Xen hypervisor is an open source virtual machine monitor
[20,21]. As shown in Fig. 1, Xen architecture consists of Xen hy-
pervisor and guest domains. The Xen hypervisor can protect guest

480 J.-W. Lin et al. / Future Generation Computer Systems 37 (2014) 478–487
Fig. 1. Xen I/O architecture.

Fig. 2. System model.

domains to be isolated from each other. It provides an abstrac-
tion layer between guest domains and actual hardware of the PM,
which performs functions such as CPU scheduling and memory al-
locations for the guest domains. The Xen hypervisor can slice the
resources of a PM to offer the guest domains (VMs) in a PM. In Xen,
the guest domain can be imaged as a VM. The guest domains can-
not directly access the I/O devices of the PM, e.g., disk and network
interface card. A special guest domain called the driver domain has
the I/O drivers of the PM. The driver domain performs I/O opera-
tions on behalf of guest domains. All I/O traffic of guest domains
is processed through the driver domain. All I/O requests of guest
domains have to wait until that the driver domain is running. For
example, when a guest domain issues a network I/O request for a
network packet, the request will be sent to the driver domain as
an event. On receiving the event, the driver domain forwards this
packet to the network interface card.

Xen Cloud Platform is a server virtualization platform, which
extends the Xen architecture to adapt the systems with a large
number of PMs. Using this virtualization platform, one of the PMs is
selected to collect hardware resource information across thewhole
system and to deploy multiple VMs into the PMs of the system.

2.3. System model

We refer to the two-level cloud architecture to investigate the
QAVMP problem. The cloud system consists of a single controller
node and a number of physical machine (PM) nodes, as shown in
Fig. 2. The referred system architecture is similar to the architec-
ture of Xen Cloud Platform [22].

The PM nodes are distributed within a set of clusters. In each
cluster, there is a switch to provide the communication between
any two PM nodes in the same cluster and the communication
with the controller node. The controller node mainly manages the
resources of PM nodes and performs the VM placement. Each PM
node periodically sends the amount of its available resources to the
controller node. Using the available resource information, the VM
placement algorithm is performed in the controller node.

2.4. Related work

For the VM placement issue, it has been discussed extensively
in the literature [10–19], among them, the VM placement problem
is usually transformed to the multiple knapsack problem. With
the problem transformation, the ILP model corresponding to the
VM placement can be easily formulated. Based on the derived ILP
model, the optimal solution of the VM placement problem can be
obtained.

In addition to considering the resource utilizations of PMs, the
VM placement algorithm of [19] specially concerns the data trans-
mission delay problem. The data transmission delay is defined as
the data access timebetween storage and aVM. In cloud computing
systems, the performance of data-intensive applications strongly
depends on data transmission delay. It is required to take the data
transfer delay into the VM placement. The work of [17,18] pro-
vided deep insight into the resource provisioning of VMs in cloud
computing systems. In [17], an optimal virtual machine placement
(OVMP) algorithmwas proposed to provision the resources of VMs
based on two provisioning plans: reservation and on-demand. In
the reservation plan, the customers need to reserve the resources
in advance. In the on-demand plan, the resources are dynamically
provisioned to the customers based on the pay-per-use basis. The
OVMP algorithm can optimally adjust the tradeoff between the ad-
vance reservation of resources and the dynamical allocation of on-
demand resources. Based on the OVMP algorithm, the total cost
of resource provisioning of VMs can be minimized in a multiple
cloud provider environment. In addition, the algorithm also takes
the demand and price uncertainties into the resource provisioning.
Finally, in the OVMP algorithm, the optimal resource provisioning
solution is obtained by formulating and solving a stochastic integer
programming problem. To further improve the OVMP algorithm,
the same authors proposed another optimal cloud resource pro-
visioning algorithm in [18], called the OCRP algorithm. The OCRP
algorithm extends the OVMP algorithm to provision resources of
VMs in multiple provisioning stages. To solve the optimal resource
provisioning in an efficientway, twodifferent approaches (Benders
decomposition and sample-average approximation) are applied in
the OCRP algorithm instead of the stochastic programming ap-
proach. However, in [17,18], the VM placement was performed
within a multi cloud provider environment, so only the coarse-
grained VM placement information was given. Specifically, for
each VM, the placement information only indicates which cloud
provider hosts the VM, not the information about which PM hosts
the VM. In addition, the VM interference is not discussed in [17,18].

Maximum:
i∈E

j∈P

X (e)
ij × RPi +

i∈N

j∈P

x(n)
ij × RPi

−

i∈E

j∈P

y(e)
ij × PPi +

i∈N

j∈P

y(n)
ij × PPi

, (1)

subject to:

∀i ∈ N,

j∈P

x(n)
ij ≤ 1, (2)

∀j ∈ P,

i∈N

x(n)
ij × D(c)

i ≤ R(c)
j , (3)

∀j ∈ P,

i∈N

x(n)
ij × D(m)

i ≤ R(m)
j , (4)

J.-W. Lin et al. / Future Generation Computer Systems 37 (2014) 478–487 481
∀j ∈ P,

i∈N

x(n)
ij × D(s)

i ≤ R(s)
j , (5)

∀i ∈ E, ∀j ∈ P, IOj > QoSi, X (e)
ij ≤ y(e)

ij , (6)

∀i ∈ N, ∀j ∈ P, IOj > QoSi, x(n)
ij ≤ y(n)

ij , (7)

∀i ∈ E, j ∈ P, X (e)
ij , y(e)

ij ∈ {0, 1} , (8)

∀i ∈ N, j ∈ P, x(n)
ij , y(n)

ij ∈ {0, 1} . (9)

TheVM interferencewas investigated in [23–26]. The amount of
VM interference cost depends on various factors, such as the types
of applications running in VMs, the number of VMs placed at the
same PM, the choice of the VM scheduling algorithm. In [27], the
authors explored the relationship between VM (domain) schedul-
ing in a virtual machine monitor (VMM) and I/O performance. Tra-
ditionally, different VMM schedulers only focused on how to fairly
share the processor resources among domains. However, this can
result in poor or unpredictable application performance in the I/O
aspect. Using the VM technology, the authors combined different
applications with processor-intensive, bandwidth-intensive, and
latency sensitive types to be run concurrently in a PM, and then
they evaluated the impacts of different schedulers on the proces-
sor and I/O performance. The study revealed that VMM schedulers
do not achieve the same level of fairness for I/O-intensive appli-
cations as they run concurrently with compute-intensive appli-
cations. In [24,25], they investigated the impacts of different disk
I/O schedulers for VMs. In [26], the experimental research focused
on the measurements of network I/O performance interference
among VMs. For the work of [23], it is based on the monetary cost
to analyze the VM interference. In addition, the authors also pro-
posed a pricing scheme to charge users according to their resource
consumption excluding the effect of VM interference.

All the above VM interference literature only conducted exten-
sive experiments to measure the interference cost in terms of the
performance interference in various metrics (e.g., I/O execution
and throughput, CPU utilization, disk latency, etc.). The literature
did not discuss how to take the VM interference into the design of
the VM placement algorithm.

3. QoS-aware VM placement

Theorem 1. The QAVMP problem is an NP-hard problem.

Proof. In the previous studies on the virtual machine placement
(VMP) problem [10–19], the VMP problem is usually transformed
to the multiple knapsack (MK) problem to maximize the resource
utilizations of PMs in the creation of VMs. The MK problem is to
solve the following problem. Given a set of knapsacks and a set
of items, each knapsack has a capacity limit, and each item has a
weight and a profit. The objective of the MK problem is to place
items into the knapsacks such that the total profit of placed items
ismaximized and the totalweight of items placed in each knapsack
does not exceed the capacity limit of the knapsack.

For the VMP problem, it aims to place VMs into the PMs such
that the profit of cloud provider is maximized. Each PM has limited
resources to host a number of VMs, and each VM has its resource
demand and the rental price.

In the VMP problem, each PM and VM can be regarded as a
knapsack and an item in the MK problem, respectively. A PM has
limited resources to host a number of VMs. A VM has its resource
demand and the rental price. The objective of the VMP problem is
to put VMs into the PMs as many as possible while not exceeding
the resource limit of each PM. In addition, the cloud provider can
obtain themaximum profit by placing VMs in PMs.With the above
mappings, the VMP problem can be transferred to theMKproblem.
However, the MK problem is well-known to be NP-hard [28].
The solution of the VMP problem will take much computational
time. In addition to the resource utilization of PMs, our QAVMP
problem additionally take the QoS requirements of applications
and VM interference into the VM placement. Due to consider-
ing the above three factors, the QAVMP problem is more compli-
cated than theVMPproblem investigated in theprevious literature.
Therefore, the QAVMP problem is also NP-hard. �

Without considering the VM interference in the VM placement,
the QoS requirements of applications running in VMs may be
violated. Different from the traditional VMplacement problem, our
investigated QAVMP problem considers the following three factors
in the VM placement: (1) the resource demand of a VM (2) the
QoS requirements of applications, and (3) the VM interference (the
interference among VMs). To integrate these three factors of the
QAVMPproblem into the VMplacement, we are based on the profit
perspective of a cloud provider to incorporate the above three
concerned factors. Then, the QAVMP problem can be formulated as
an ILP model to obtain the optimal solution. However, solving ILP
will take considerable computational time. In this section, we will
propose a heuristic algorithm with polynomial time to solve the
QAVMP problem. The time complexity of the heuristic algorithm is
also analyzed.

3.1. ILP model

The ILP is a known mathematical method for solving the op-
timal problems with following characteristics: a linear objective
function, a number of linear constraints, and an integer solution
set. Before formulating the QAVMP problem using the ILP model,
we first make the following assumptions.
1. The cloud providerwould like to create a number of newVMs in

PMs concurrently. There are different resource demands for the
new VMs. In addition, the new VMs have different rental prices
for customers (users). Basically, the VM with a high resource
demand has a high rental price.

2. If the provided computing environment (VM) cannot meet the
QoS requirement of the user application, the cloud provider
will return an amount of money to the user. Here, the penalty
payment due to the QoS violation is stated in the SLA between
the cloud provider and the user.

3. Before placing the new VMs, each PM already has held a certain
number of existing VMs.

Based on the above assumptions, the ILP model for an instance
P of the QAVMPproblem can be expressed as Eqs. (1)–(9). In the ILP
model, the objective function is tomaximize the profit of the cloud
provider after placing the new VMs in PMs. Table 1 lists the nota-
tions used to express the ILP model. Basically, the cloud provider
would like to make PMs hold VMs as many as possible to gener-
ate more revenue. As increasing the number of VMs in a PM, there
is a higher level of adverse effects on the performance of applica-
tions running on the VMs. This will possibly increase the penalty
payment of the cloud provider in the VM provisioning. There is a
tradeoff between the revenue and the penalty payment in the VM
provisioning.

In Eq. (1), the above tradeoff is quantified using the profit met-
ric. The calculation of the profit metric includes two terms. The
firstmain term represents the total revenue due to establishing the
existing and new VMs. The second main term is the total penalty
payment due to violating the QoS requirements of the applications
running in VMs. The decision variable X (e)

ij keeps the placement
statuses of existing VMs. The value of each X (e)

ij is known in ad-
vance. If X (e)

ij is 1, it represents that the existing VM i is placed at
PM j; otherwise not. The second term is the generated revenue after
placing a number of new VMs. The decision variable x(n)

ij stores the

482 J.-W. Lin et al. / Future Generation Computer Systems 37 (2014) 478–487
Table 1
Notations.

Notation Description

P A set of physical machines in a cloud computing system.
E A set of existing virtual machines that were created in the cloud

computing system.
N A set of new virtual machines to be created.
RPi The rental price of the virtual machine i.
PPi The penalty due to violating the QoS of the application in the

virtual machine i.
X (e)
ij The {0, 1} variable indicates whether the existing virtual machine i

was created in the physical machine j.
x(n)
ij The {0, 1} variable indicates whether the new virtual machine i is

placed in the physical machine j.
y(e)
ij The {0, 1} variable indicates whether the QoS violation occurs

when X (e)
ij = 1.

y(n)
ij The {0, 1} variable indicates whether the QoS violation occurs

when x(n)
ij = 1.

R(c)
j The available compute units of the physical machine j.

R(m)
j The available memory space of the physical machine j.

R(s)
j The available storage space of the physical machine j.

D(c)
i The required compute units of the new virtual machine i.

D(m)
i The required memory space of the new virtual machine i.

D(s)
i The required storage space of the new virtual machine i.

IOj The average service time of a network I/O request in the physical
machine j.

QoSi The QoS of the application running in the virtual machine i.
λj The arrival rate of network I/O requests to the PM j.
µj The mean service time of network I/O requests in the PM j.
σ 2
j The variance of the service time distribution for network I/O

requests in the PM j.
Se_vm The selected VMs of PMs.
Sr_vm The corresponding bipartite vertices of selected VMs.
Sr_link The corresponding bipartite edges of selected VMs.

placement statuses of new VMs. Note that the value of each x(n)
ij

is determined by the ILP formulation. If x(n)
ij is 1, it represents that

the new VM i is placed at PM j; otherwise not. Each existing or new
VM i has a different rental price RPi. In Eq. (1), the sum of the first
and second terms represents the total revenue by establishing the
existing and new VMs. The third and fourth terms are the penalty
payments due to violating the QoS requirements of the applica-
tions running in the existing and new VMs, respectively. As men-
tioned in Section 1, the QoS violation is determined by verifying
the response time of a data access. For an existing (new) VM i in
the PM j, if its data response time cannot meet the requirement of
its running application, this event will be kept in y(e)

ij (y(n)
ij). Note

that each VM i also has a different penalty payment Ci. The value of
each y(e)

ij (y(n)
ij) is also determined by the ILP formulation. The sum

of the third and fourth terms represents the total penalty payment.
There are a number of constraints for placing the new VMs in

PMs. In Eq. (2), it limits that each VM can be only placed at a certain
PM. In Eqs. (3)–(5), it denotes that each PM cannot hold too many
VMs to exceed the amount of its available resources. Next, Eqs. (6)
and (7) are used to determine whether the application running in
a VMmay incur the QoS violation. Note that the QoS metric in this
paper is the data response time. The M/G/1 queuing model [29] is
used to estimate the mean completion time of a data access issued
from a VM. Then, the estimated completion time is compared with
the expected data response time stated in the QoS requirement.
Based on the comparison result, we can conclude whether the QoS
violation is made or not. The details are described in the following
subsection. Finally, in Eqs. (8) and (9), they set the value domains
of the decision variables: X (e)

ij , x(n)
ij , y(e)

ij , and y(n)
ij to be {0, 1}.

3.2. The QoS-violation assessment

The assessment of QoS violation has been stated in Section 1 by
verifying the completion time of a data access issued from a VM.
From the introduction of Xen in Section 2.2, we also know that
each VM in a PM uses the driver domain of the PM to process all
its data accesses. If two VMs i and j are allocated on the same PM p,
their data accesses are processed by the driver domain of PM p in a
certain sequence. The following assumptions are given for model-
ing the execution behaviors of data accesses, which are also made
in [30–32].
1. We assume that the data accesses issued from each VM i follow

an independent Poisson distribution associatedwith an average
rate of λi (data access issued per unit of time unit).

2. The data accesses to the driver domain are processed based on
the first-come-first-served (FCFS) basis.

3. In the driver domain, the service time of a data access follows
an arbitrary distribution. A general distribution is used tomodel
the service time of a data access. In the given general distribu-
tion, the average and variance of the service time are assumed
to be µ and σ 2, respectively.

Based on the above assumptions, the M/G/1 queuing model can
be as the analytical performance model for evaluating the perfor-
mance of data accesses (workloads) in the driver domain. Based
on the M/G/1 queuing model, we can use the Pollaczk–Khintchine
(P–K) formula to estimate the mean completion time of a data ac-
cess in the driver domain. Note that if there were k data accesses in
the driver domain before a new data access, the completion time
of this new data access includes the waiting time for completing
these k existing data access and the service time of the new data
access. In the given P–K formula [29], there are three key factors to
estimate the completion time of a data access.
• The arrival rate of data accesses to the driver domain (λ).
• Themean service time of a data access in the driver domain (µ).
• The variance of the service time distribution for data access

(σ 2).

As mentioned in the above assumptions, each VM is based on
an independent Poisson process to data accesses. Therefore, the
arrivals of data accesses to the driver domain follow a compound
(pooled) Poisson process, in which the arrival rate parameter is
equal to the sumof the individual rate parametersλ1+λ2+· · ·+λn
for all the VMs on the PM p. This property has been proved in the
probability literature [29]. The VM can issue data accesses when it
obtains the CPU time. The CPU allocation time for a VM needs to be
taken into the above arrival rate calculation. In Eq. (10), it gives the
arrival rate of data accesses to the driver domain of PM p if there
are |E| existing VMs on PM p and |V | new VMs would like to be
placed at PM p.

λj =

i∈E

λ
(e)
i · r (e)

i +

i∈N

λ
(n)
i · r (n)

i , (10)

where r (e)
i and r (n)

i are the ratio of CPU time allocated to the ith
existing (new) VM during a CPU unit time.

By substituting the three key factors into the PK-formula in
Eq. (11), the completion time of a data access can be estimated.
Finally, the estimated completion time of a data access is compared
with the required data response time. If the former is larger, the
QoS is violated (see Eqs. (6)–(7)); otherwise not.

IOj =
2µj − λj + λjµ

2
j σ

2
j

2µ2
j − 2λjµj

. (11)

3.3. Heuristic algorithm

In the above ILP model, the solutions are obtained and put in
the decision variables x(n)

ij , y(e)
ij and y(n)

ij . There are |V |× |P| decision
variables for x(n)

ij and y(n)
ij , as well as |E| × |P| decision variables for

y(e)
ij . Solving ILP is also known to be an NP-complete problem [28].

J.-W. Lin et al. / Future Generation Computer Systems 37 (2014) 478–487 483
Fig. 3. An example to demonstrate an QAVMP problem.
If we use ILP to obtain the optimal solution to the QAVMP prob-
lem, much computational time will be taken. Therefore, we pro-
pose a heuristic algorithm to efficiently solve the QAVMP problem.
Before getting into the technical details of the heuristic algorithm,
Fig. 3 gives a VM placement scenario to elaborate how the heuris-
tic algorithm works. In Fig. 3, we give a VM placement scenario
for elaborating how the operations of the QAVMP algorithmworks.
It assumes that there are three PMs in a cloud computing system,
each ofwhich has already held a number of existing VMs. The cloud
provider would like to place five new VMs in these three PMs. In
addition to giving the resource demands of VMs and resource ca-
pacities of PMs, we also give some additional parameters for VMs
and PMs. These additional parameters are used for demonstrating
how the QAVMP algorithm considers the QoS requirements of ap-
plications and the VM interference in the VM placement. The issue
rate of data accesses and themean service rate of data accesses are
given for calculating the service time of a data access. To compare
with the expected data response time, we can verify whether the
QoS requirement of a VM is violated or not. If so, the corresponding
penalty payment is subtracted from the rental price of the VM.

The basic operations of the heuristic algorithm are shown in
Fig. 4, which consists of four phases: construction phase, con-
tention phase, placement phase, and reformation phase. The latter
three phases are repeatedwith a number of rounds. Based on Fig. 3,
we demonstrate the detailed operations of the heuristic algorithm
in the above four phases.

3.3.1. Construction phase
Initially, the heuristic algorithm establishes a bipartite graph to

model all the possible placement relationships between new VMs
andPMs. For the newVM i, if it has a linkwith the PM j, it represents
that the PM j has enough resources to hold the VM i. Based the
resource demands of new VMs and the resource capacities of
PMs, a bipartite graph is established between the new VMs and
the PMs. Then, the heuristic algorithm runs round by round to
perform the three phases: contention, placement, and reformation.
Fig. 5(a) first shows the bipartite graph formation for modeling the
placement relationships between the VMs and PMs in Fig. 3.

3.3.2. Contention phase
In the contention phase, each PM j calculates the profit with re-

spect to each of its possible new VM members. For the PM j, the
VM i is one of its possible VM members if the VM i has a link with
the PM j on the bipartite graph. Assume that a VM i is finally placed
Fig. 4. A flowchart for the heuristic algorithm.

at the PM j. The correspondingly generated profit is calculated as
follows.

profit = revenue − penalty, (12)

where revenue is the rental price (revenue) of VM, and penalty is
the introduced total penalty payment due to placing the VM at
the PM. Here, the above mentioned P–K formula (see Eq. (11))
is used to verify the QoS violation of each VM in the PM. If so,
the corresponding penalty payment of a VM is accumulated into
penalty. After calculating the profits of all possible VMs, the PM
selects a VM with the largest profit as the expected VM (the
VM to be placed at the PM). For conveniently demonstrating the
contention phase in Fig. 3, we use a table to directly show the
profit calculation results of each PM in the first round. As shown
in Fig. 5(a), the PM1 has 2 possible VMmembers: VM1 and VM2. In
Fig. 5(b), the VM1 is selected as the expected VM of the PM1 since
it has the largest profit 65. However, it is possible that two or more
PMs select the same VM as their commonly expected VM. There
is the expected VM selection conflict among PMs. To resolve the
conflict, a collection set Se_vm is used. Whenever each PM selects

484 J.-W. Lin et al. / Future Generation Computer Systems 37 (2014) 478–487
a b c d

Fig. 5. Operations of the heuristic algorithm in the first round. (a) Initial bipartite graph. (b) Contention phase. (c) Placement phase. (d) Reformation phase.
an expected VM: vm, it puts a 4-tuple (vm, pj, profit , vm.resource)
in Se_vm. Assume that PMs p1 and p2 have the same expected VM
vi. If PM p1 is priori to PM p2 to put the corresponding 4-tuple
of its expected VM in Se_vm, the PM p2 will detect the conflict
on the expected VM selection. In such case, the profit of the VM
vi in the PMs p1 is compared with that in the PM p2. If the later
profit is larger, it represents that the placement of the VM vi in the
PM p2 is superior to that in the PM p1. Then, the 4-tuple (vi, p1,
profit(vi,p1), vi.resource) in Se_vmwill be replaced by the 4-tuple (vi,
p2, profit , vi.resource).With the above operations, Se_vm can collect
the placement information about some VMs. In Fig. 5(b), there is a
conflict between PM1 and PM2 due to selecting the same expected
VM. The VM1 is more suitable to be placed at the PM1 since the
placement at PM1 can generate a larger profit (65) than that at PM2
(25). In the end of the contention phase, Se_vm provides the VM
placement information. For example, Se_vm of Fig. 5(b) represents
that VM1 and VM4 should be placed at PM1 and PM3, respectively.

3.3.3. Placement phase
In the placement phase, the set Se_vm is used to formally place

VMs in their preferable PMs. Each VM in Se_vm is based on the ob-
jective of maximizing the profit to determine the PM where the
VM should be placed. The profit maximization implies that the VM
interference effects can beminimized. Note that the heuristic algo-
rithm only places a portion of VMs in each round. After the place-
ment phase, the placed VMs are required to be removed from the
original bipartite graph. In Fig. 5(c), the set Sr_vm keeps the VMs
to be removed. Due to placing some VMs, the resource capacities
of some PMs are required to be updated. It is possible that the
remaining resource capacity of a PM cannot continuously satisfy
the resource demands of certain VMs. In such situation, the un-
satisfied placement relationships are also required to be removed
from the original bipartite graph. In Fig. 5(c), the set Sr_link keeps
the un-satisfied placement relationships, such that which links are
required to be removed from the original bipartite graph.

3.3.4. Reformation phase
In the reformation phase, the original bipartite graph is modi-

fied using the sets Sr_vm and Sr_link. Based on the new bipartite
graph, the heuristic algorithm initiates a new round to continu-
ously perform the placement of un-placed VMs. From Fig. 5(a), we
can know that VM2, VM3 and VM5 are the un-placed VMs to be
placed at the second round. The VM1 and VM4 were placed at the
first round. These VM nodes are removed from the original bipar-
tite graph. In addition, the original link between PM1 and VM2 in
Fig. 5(a) is removed since the remaining resource capacity of PM1
cannot meet the resource demand of VM2.

Finally, the heuristic algorithm terminates under one of the
following two conditions: (1) All VMs have been placed. (2) None
PM can provide enough resources to hold anyone of un-placed
VMs. Either of the above two conditions will cause that the new
bipartite graph cannot be established between the up-placed VMs
and PMs. In such case, the heuristic algorithm stops. More detailed
operations are provided in Fig. 6.
Fig. 6. The QoS-aware VM placement (QAVMP) algorithm.

Theorem 2. The proposed heuristic algorithm takes the polynomial
time complexity O(|V |

2
|P|) to solve the QAVMP problem.

Proof. Based on the given heuristic algorithm, it initially takes
O(|V |·|P|) to establish a bipartite graph tomodel all possible place-
ment relationships between VMs and PMs. Then, the algorithm re-
peats the VM placement execution for a number of rounds. In each
round, the VM placement execution is divided into three phases:
contention, placement, and reformation. In the contention phase,
the generated profit of each possible VM placement is calculated

J.-W. Lin et al. / Future Generation Computer Systems 37 (2014) 478–487 485
by traversing each link (VM–PM pair) on the bipartite graph. Based
on the calculated profits, the algorithm can select the expected VM
of each PM (the VM to be placed at the PM). To avoiding that two
ormore PMs select the same expected VM, the set Se_vm is used to
resolve the conflict by comparing the generated profits. Based on
the above description, the time complexity of the contention phase
is dominated by the profit calculations which take O(|V | · |P|). In
the placement phase, the set Se_vm is used to practically place VMs
at their preferable PMs. It is well-known that the time complexity
analysis of an algorithm is done under the worst case considera-
tion. In the worst case, the set Se_vm only contains one item of VM
placement information, such that all PMs have the same expected
VM. The expected VMhas |P| linkswith all the PMs on the bipartite
graph. In such case, the time complexity of the placement phase is
O(1). In the reformation phase, it takes O(|P|) to remove the above
|P| links on the original bipartite graph. Under the worst case, a
round can only determine the placement information of one VM.
The maximum number of the rounds for the heuristic algorithm is
|V | since the total number of VMs to be placed is |V |. The entire
heuristic algorithm runs in O(|V |

2
|P|). �

4. Performance evaluation

We developed simulation programs using MatLab [33] to eval-
uate the performance of our heuristic QAVMP algorithm and
make comparisons with three intuitive VM placement algorithms:
random-fit, first-fit, and least-fit. When a VM creation request is
issued, there may have multiple PM candidates with enough re-
sources to hold the VM. The random-fit algorithm randomly selects
one of the PM candidates. The first-fit algorithm always selects the
PM candidate with the smallest ID. The least-fit algorithm selects
the PM candidate with the least remaining resources after placing
the VM. Here, the least-fit algorithm is instead of the optimal VM
placement algorithm in the previous literature. Note that all the
above three intuitive algorithms do not concern the VM interfer-
ence.

4.1. Simulation environment

In our simulation experiments, we assumed that the cloud com-
puting system has 250 PMswhich are randomly distributedwithin
10 PM groups (clusters). The Tiers model [34] is used generate the
network topology of the cloud computing system. First, each of 10
PM groups (clusters) is assumed to be located within a local area
over a 100 × 100 unit square plane. Among the 10 clusters, one
is specified as the central cluster to organize all the 10 PM clus-
ters as a tree topology. In each PM cluster, the PMs are assumed
to be randomly deployed in the located local area of the cluster. In
addition, there is a switch in each PM cluster to provide both the
intra-cluster communication and the inter-cluster communication
between the PMs.

Based on the system architecture, the simulation experiments
were performed over the following parameter settings.

• In each PM, there have been a number of existing VMs in it. The
number of the existing VM is randomly determined from 0 to
10.

• The amount of available resources is represented as a triple-
tuple (available CPU GHz, available memory space in GB, avail-
able storage space in GB). The resource interval [(12, 129, 200),
(96, 3000, 9600)] is used to randomly decide the available re-
sources of each PM.

• The bandwidth is assumed to be within [10 Gbps, 40 Gbps] for
the transmission line between a PM and its connected switch.

• A number of newVMs is assumed to be createdwithin 250 PMs.
The number of new VMs is set from 200 to 1000 in each simu-
lation run, respectively.
• The amount of the resources required for a new VM was set
by referring to the Amazon EC2 with different re-source de-
mands [35].

• To simulate the profit metric, the price of a VM (the given rev-
enue of a VM) and the penalty payment due to the QoS violation
in aVMare given.Wealso refer toAmazonEC2 to set the price of
each VM [36]. As mentioned in Section 1, the QoS requirement
of an application running in a VM is dependent on the data ac-
cess delay. For an application, its expected data access delay is
specified within (0.5 ms, 10 ms). If the QoS requirement is vio-
lated, the penalty payment is set using the violation ratio × the
price of the VM. Note that the violation ratio is defined as the
ratio of the estimated data access delay to the expected data
access delay specified in the SLA.

4.2. Simulation results

The following simulation results show the mean of 50 simula-
tion runs. Fig. 7(a) shows the generated profits by creating differ-
ent numbers of VMs from 200 to 1000. As seen from Fig. 7(a), the
profits of all algorithms increase with the number of VMs. How-
ever, the random-fit, first-fit, least-fit algorithms do not take the
VM interference into account. As creatingmoreVMs, it correspond-
ingly increases the effect of VM interference. The VM interference
will affect the QoS requirements of applications. If the effect of
the VM interference is not controlled, the QoS violation of appli-
cations will result in penalty payment to reduce the profit gain of
the cloud provider. In the proposed heuristic algorithm, the VM in-
terference is reduced as much as possible. There is a linear trend in
the profit growth as increasing the number of created VMs. Com-
pared to the three intuitive algorithms, the heuristic algorithm can
enhance their profits by about 26%, 22%, and 31%, respectively.

Fig. 7(b) shows the comparison among the four algorithms in
the average number of QoS-violated VMs (the VMs without satis-
fying QoS requirements). In the random-fit, first-fit and least-fit al-
gorithms, we can obviously see that there is a rapid growth in the
number of QoS-violated VMs. With considering the VM interfer-
ence and the QoS requirements of applications, the heuristic algo-
rithm avoids severely affecting the performance of created VMs to
result in violating the QoS requirements of their running applica-
tions. Therefore, there is a smooth increase in the number of QoS-
violated VMs as increasing the number of created VMs. On average,
the number of QoS-violated VMs in the heuristic algorithm is about
one-third of the numbers in the three intuitive algorithms.

The number of QoS-violated VMs substantially affects the
penalty payment of the cloud provider. The proposed heuristic al-
gorithm is based on the profit maximization to place VMs in PMs.
For a VM i, if its placement is inevitable to violate the QoS require-
ments of applications running in some VMs, it will be placed at the
PM with the less penalty payment to acquire the larger profit of
the cloud provider. Therefore, in Fig. 7(c), we can also see that the
average penalty payment in the heuristic algorithm is less than the
three intuitive algorithms. The average amount of penalty payment
in the heuristic algorithm is about one-third of the three intuitive
algorithms.

For the number of VMs created in the PMs, the least-fit algo-
rithm can fully exploit the resources of PMs since it attempts to
place the VM at the PM with few available resources. The PMs
with more available resources are used to host more VMs. Basi-
cally, the least-fit algorithm should have better performance in the
number of created VMs than the other two intuitive algorithms
and our proposed heuristic algorithm. In the heuristic algorithm, it
also attempts to place many VMs for maximizing the profit of the
cloud provider in addition to reducing the VM interference. From
Fig. 7(d), we can see that the proposed heuristic algorithm is close
to the least-fit algorithm in the number of VMs created. Compared

486 J.-W. Lin et al. / Future Generation Computer Systems 37 (2014) 478–487
a b c d

Fig. 7. Comparisons between the heuristic algorithm and three intuitive algorithms. (a) Profit. (b) Number of QoS-violated VMs. (c) Penalty payment. (d) Number of placed
VMs.
Fig. 8. Comparison of average delay time of a network I/O request.

to the two algorithms, the heuristic algorithm increases 2% of num-
ber of VMs created.

Fig. 8 depicts the average delay time of a network I/O request.
We assume that a data access is issued for retrieving 1 MB data
from a certain node. Due to considering VM interference, the data
response (delay) time is taken into account while hosting VMs in
PMs. In contrast, the data delay time is not concerned by other
three algorithms in the VM placement. Therefore, the average
delay time of the proposed heuristic algorithm is much less than
that of the other three algorithms. As shown in Fig. 8, the proposed
heuristic algorithm improves about 93% average delay time of the
other three intuitive algorithms.

In Section 3,wehave proved that the studiedQAVMPproblem is
an NP-hard problem. The best VM placement will take much time.
It can be only performed in a small-scale simulation environment
to compare the proposed heuristic VMplacementwith the best VM
placement. For the comparison, we assume that there are 5 PMs.
The numbers of VMs to be placed are from 1 to 11. Fig. 9 illustrates
the comparison results between the heuristic and best solutions.
From Fig. 9(a), the profit generated by the heuristic solution is 99%
of that generated by the best solution. Both the heuristic and best
solutions can avoid theVM interference occurrence. Fig. 9(b) shows
the comparison in the average number of QoS-violated VMs. In this
metric, the heuristic solution increases about 0.07%. For the penalty
payment, the best solution can reduce about 13% of the heuristic
solution. In the number of placed VMs, the both solutions have the
almost same value.

5. Conclusions

We have investigated the QoS-aware virtual machine place-
ment (QAVMP) problem for efficiently performing data sensitive
applications in cloud computing systems. In addition to exploit-
ing the resources of PMs, the QoS requirements of applications and
the interference among VMs are also considered in the QAVMP
problem. To optimally solve the QAVMP problem, we formulate
the QAVMP problem as an ILP model by integrating the three con-
cerned factors of the QAVMP problem into the profit metric of
the cloud provider. However, the ILP model involves the compli-
cated computation. Moreover, solving ILP is an NP-complete prob-
lem [28]. To seek a time-efficient solution of the QAVMP problem,
we also propose a heuristic algorithm. The time complexity of the
heuristic algorithm is with the polynomial time O(|V |

2
|P|). In the

heuristic algorithm, a bipartite graph is modeled to represent all
the possible placement relationships between VMs and PMs. Then,
the VMs follow a certain sequence to be placed at their prefer-
able PMs. The VM placement sequence is designed to increase the
VM placement profit of the cloud provider as much as possible.
Compare to other VM placement schemes, the simulation results
showed that the heuristic algorithm is superior in various perfor-
mance metrics including the generated profit, the number of QoS-
violated VMs, the penalty payment due to QoS violation, and the
number of placed VMs.

In the future, we plan to implement the proposed QAVMP
algorithm in a real cloud computing system. Moreover, the VM
placement algorithm will be also extended to concern energy
consumption.

Acknowledgment

This research was supported by the National Science Council,
Taiwan, ROC, under Grant NSC 99-2221-E-030-007-MY3.
a b c d

Fig. 9. Comparisons between the heuristic algorithm and the best VM placement from the ILP model. (a) Profit. (b) Number of QoS-violated VMs. (c) Penalty payment.
(d) Number of placed VMs.

J.-W. Lin et al. / Future Generation Computer Systems 37 (2014) 478–487 487
References

[1] Amazon EC2, 2013. URL http://aws.amazon.com/ec2/.
[2] Google Compute Engine, 2013. URL http://cloud.google.com/compute.
[3] GoGrid, 2013. URL http://www.gogrid.com/.
[4] Amazon EC2 Instance Types, 2013. URL http://aws.amazon.com/ec2/instance-

types/.
[5] Xen, 2013. URL http://xen.org/.
[6] VMware, 2013. URL http://www.vmware.com/.
[7] Kernel Based Virtual Machine, 2013. URL http://www.linux-kvm.org/page/

Main_Page/.
[8] S. Ibrahim, B. He, H. Jin, Towards pay-as-you-consume cloud computing, in:

Proc. IEEE Int. Conf. Services Comput., 2011, pp. 370–377.
[9] B. Zhang, X. Wang, R. Lai, L. Yang, Y. Luo, X. Li, A survey on I/O virtualization

and optimization, in: Proc. 5th Ann. ChinaGrid Conf., 2010, pp. 117–123.
[10] L. Wang, R.A. Hosn, C. Tang, Remediating overload in over-subscribed

computing environments, in: Proc. 2012 IEEE 5th Int. Conf. Cloud Computing
(CLOUD), 2012, pp. 860–867.

[11] S. Chen, J. Wu, Z. Lu, A cloud computing resource scheduling policy based on
genetic algorithm with multiple fitness, in: Proc. 2012 IEEE 12th Int. Confe.
Computer and Information Technology, CIT, 2012, pp. 177–184.

[12] U. Lampe, T. Mayer, J. Hiemer, D. Schuller, R. Steinmetz, Enabling cost-efficient
software service distribution in infrastructure clouds at run time, in: Proc.
2011 IEEE Int. Conf. Service-Oriented Computing and Applications, SOCA,
2011, pp. 1–8.

[13] M.G. Kallitsis, R.D. Callaway, M. Devetsikiotis, G. Michailidis, Presence-aware
optimum resource allocation for virtual collaboration web 3.0 environments,
in: IEEE Workshop GLOBECOM ’2009, 2009, pp. 1–5.

[14] P. Campegiani, F.L. Presti, A general model for virtual machines resources
allocation in multi-tier distributed systems, in: Proc. 5th Int. Conf. Autonomic
and Autonomous Systems, 2009, pp. 162–167.

[15] H.N. Van, F.D. Tran, J.-M. Menaud, Autonomic virtual resource management
for service hosting platforms, in: Proc. Workshop Software Eng. Challenges of
Cloud Comput., Vancouver, Canada, 2009, pp. 1–8.

[16] J. Xu, J.A.B. Fortes, Multi-objective virtual machine placement in virtualized
data center environments, in: Proc. IEEE/ACM Int. Conf. Green Comput. and
Commun. & Int. Conf. Cyber, Physical and Social Comput., Washington, DC,
USA, 2010, pp. 179–188.

[17] S. Chaisiri, B.-S. Lee, D. Niyato, Optimal virtual machine placement across
multiple cloud providers, in: IEEE Asia–Pacific Services Comput. Conf., APSCC
’09, 2009, pp. 103–110.

[18] S. Chaisiri, B.-S. Lee, D. Niyato, Optimization of resource provisioning cost in
cloud computing, IEEE Trans. Serv. Comput. 99 (2012).

[19] K. Zamanifar, Data-aware virtual machine placement and rate allocation in
cloud environment, in: Proc. 2012 2nd Int. Conf. Adv. Comput. & Commun.
Technologies, ACCT, 2012, pp. 357–360.

[20] P.R. Barham, B. Dragovic, K.A. Fraser, S.M. Hand, T.L. Harris, A.C. Ho,
E. Kotsovinos, A.V.Madhavapeddy, R. Neugebauer, I.A. Pratt, A.K.Warfield, Xen
2002, Tech. Rep, University of Cambridge, Cambridge, 2003.

[21] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, A.Warfield, Xen and the art of virtualization, in: Proc. 19th ACM Symp.
Operating Systems Principles, SOSP ’03, 2003, pp. 164–177.

[22] Xen Cloud Platform, 2012. URL http://xen.org/products/cloudxen.html.
[23] X. Pu, L. Liu, Y.Mei, S. Sivathanu, Y. Koh, C. Pu, Y. Cao,Who is your neighbor: net

I/O performance interference in virtualized clouds, IEEE Trans. Serv. Comput.
99 (2013).

[24] D. Boutcher, A. Chandra, Does virtualization make disk scheduling passé?
SIGOPS Oper. Syst. Rev. 44 (2010) 20–24.

[25] M. Kesavan, A. Gavrilovska, K. Schwan, On disk I/O scheduling in virtual
machines, in: Proc. 2nd Workshop on I/O Virtualization, Pittsburgh, PA, USA,
2010, pp. 1–6.

[26] Y. Mei, L. Liu, X. Pu, S. Sivathanu, Performance measurements and analysis of
network I/O applications in virtualized cloud, in: Proc. IEEE 2010 Int. Conf. on
Cloud Comput. (Cloud ’10), Florida, USA, 2010, pp. 59–66.
[27] D. Ongaro, A.L. Cox, S. Rixner, Scheduling I/O in virtual machine monitors, in:
Proc 4thACMSIGPLAN/SIGOPS Int. Conf. Virtual Execution Environments, New
York, USA, 2008, pp. 1–10.

[28] S. Dasgupta, C.H. Papadimitriou, U.V. Vaziran, Algorithms, McGraw-Hill, 2006.
[29] D. Gross, C.M. Harris, Fundamentals of Queueing Theory, third ed., Wiley, New

York, NY, 1998.
[30] L. Li, An optimistic differentiated service job scheduling system for cloud

computing service users and providers, in: Proc. 2009 3rd Int. Conf.
Multimedia and Ubiquitous Engineering, 2009, pp. 295–299.

[31] A. Sodan, Predictive space- and time-resource allocation for parallel job
scheduling in clusters, in: Proc. IEEE 2010 Int. Conf. Parallel Processing
Workshops, 2010, pp. 313–322.

[32] K. Dutta, R. Guin, S. Banerjee, S. Chakrabarti, U. Biswas, A smart job scheduling
system for cloud computing service providers and users: modeling and
simulation, in: Proc. 2012 1st Int. Conf. Recent Advances in Information
Technology, RAIT, 2012, pp. 346–351.

[33] MATLAB—The Language Of Technical Computing, 2010. URL http://www.
mathworks.com/.

[34] K.L. Calvert, M.B. Doar, E.W. Zegura, Modeling internet topology, IEEE
Commun. Soc. 35 (1997) 160–163.

[35] Amazon EC2—Instance Types, 2013.
URL http://aws.amazon.com/ec2/#instance.

[36] Amazon EC2 Pricing, 2013. URL http://aws.amazon.com/ec2/pricing/.

Jenn-Wei Lin is currently a professor in the Department
of Computer Science and Information Engineering, Fu Jen
Catholic University, Taiwan. He received the M.S. degree
in computer and information science from National Chiao
Tung University, Hsinchu, Taiwan, in 1993, and the Ph.D.
degree in electrical engineering from National Taiwan
University, Taipei, Taiwan, in 1999. He was a researcher
at Chunghwa Telecom Co., Ltd., Taoyuan, Taiwan from
1993 to 2001. His current research interests are cloud
computing, mobile computing and networks, distributed
systems, and fault-tolerant computing.

Chien-Hung Chen is currently a Ph.D. student in the De-
partment of Electrical Engineering, National Taiwan Uni-
versity. He received the B.S. degree in computer science
and information engineering from the Chung Hua Uni-
versity, Taiwan, in 2008, and the M.S. degree in com-
puter science and information engineering from Fu Jen
Catholic University, Taiwan, in 2012. His research inter-
ests include cloud computing, mobile networks, and fault-
tolerant computing.

Chi-Yi Lin is an associate professor in the Department
of Computer Science and Information Engineering at
Tamkang University, Taipei, Taiwan. He received his B.S.
and Ph.D. degrees in electrical engineering from National
Taiwan University in 1995 and 2003, respectively. He was
a visiting researcher at AT&T Labs-Research, New Jersey
from August to December, 2000, an Assistant Researcher
at the Telecommunication Labs, Chunghwa Telecom from
2003 to 2007, and a Postdoctoral Research Fellow at the
Department of Computer Science and Information Engi-
neering, National Taiwan University of Science and Tech-
nology from 2007 to 2008. His research interests include
cloud computing, ubiquitous computing, and social net-
works.

http://aws.amazon.com/ec2/
http://cloud.google.com/compute
http://www.gogrid.com/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://xen.org/
http://www.vmware.com/
http://www.linux-kvm.org/page/Main_Page/
http://www.linux-kvm.org/page/Main_Page/
http://www.linux-kvm.org/page/Main_Page/
http://www.linux-kvm.org/page/Main_Page/
http://www.linux-kvm.org/page/Main_Page/
http://www.linux-kvm.org/page/Main_Page/
http://www.linux-kvm.org/page/Main_Page/
http://refhub.elsevier.com/S0167-739X(13)00298-7/sbref15
http://refhub.elsevier.com/S0167-739X(13)00298-7/sbref18
http://refhub.elsevier.com/S0167-739X(13)00298-7/sbref20
http://xen.org/products/cloudxen.html
http://refhub.elsevier.com/S0167-739X(13)00298-7/sbref23
http://refhub.elsevier.com/S0167-739X(13)00298-7/sbref24
http://refhub.elsevier.com/S0167-739X(13)00298-7/sbref28
http://refhub.elsevier.com/S0167-739X(13)00298-7/sbref29
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/
http://refhub.elsevier.com/S0167-739X(13)00298-7/sbref34
http://aws.amazon.com/ec2/#instance
http://aws.amazon.com/ec2/pricing/

	Integrating QoS awareness with virtualization in cloud computing systems for delay-sensitive applications
	Introduction
	Preliminaries
	Virtualization techniques
	Xen hypervisor
	System model
	Related work

	QoS-aware VM placement
	ILP model
	The QoS-violation assessment
	Heuristic algorithm
	Construction phase
	Contention phase
	Placement phase
	Reformation phase

	Performance evaluation
	Simulation environment
	Simulation results

	Conclusions
	Acknowledgment
	References

